Journal of Shanghai Jiao Tong University ›› 2024, Vol. 58 ›› Issue (5): 747-759.doi: 10.16183/j.cnki.jsjtu.2022.221
• New Type Power System and the Integrated Energy • Previous Articles Next Articles
Received:
2022-06-13
Revised:
2022-08-25
Accepted:
2022-09-15
Online:
2024-05-28
Published:
2024-06-17
CLC Number:
CUI Xian, CHEN Ziqiang. A Highly Robust State of Health Estimation Method for Lithium-Ion Batteries Based on ECM and SGPR[J]. Journal of Shanghai Jiao Tong University, 2024, 58(5): 747-759.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2022.221
Tab.2
Correlation analysis results of the proposed HI
SOC范围/% | 工况 | ||
---|---|---|---|
0.5 C,25 ℃ | 1 C,25 ℃ | 0.5 C,5 ℃ | |
[10,20) | 0.9911 | 0.9909 | 0.9910 |
[20,30) | 0.9921 | 0.9930 | 0.9951 |
[40,50) | 0.9938 | 0.9931 | 0.9955 |
[50,60) | 0.9938 | 0.9931 | 0.9955 |
[20,40) | 0.9938 | 0.9931 | 0.9955 |
[40,60) | 0.9938 | 0.9931 | 0.9955 |
[20,50) | 0.9937 | 0.9930 | 0.9955 |
[30,80) | 0.9938 | 0.9931 | 0.9953 |
Tab.4
Statistics of SOH estimation error under different working conditions
SOC范围/% | MAE/% | RMSE/% | |||||
---|---|---|---|---|---|---|---|
0.5 C, 25 ℃ | 1 C, 25 ℃ | 0.5 C, 5 ℃ | 0.5C, 25 ℃ | 1 C, 25 ℃ | 0.5 C, 5 ℃ | ||
[10, 20) | 0.269 8 | 0.399 4 | 0.458 9 | 0.329 8 | 0.516 2 | 0.538 8 | |
[20, 30) | 0.267 6 | 0.398 6 | 0.457 0 | 0.326 5 | 0.515 5 | 0.536 7 | |
[40, 50] | 0.265 4 | 0.397 8 | 0.455 1 | 0.323 4 | 0.514 9 | 0.534 6 | |
(50, 60] | 0.263 3 | 0.397 0 | 0.453 4 | 0.320 4 | 0.514 2 | 0.532 7 | |
[20, 40) | 0.261 5 | 0.396 3 | 0.452 3 | 0.317 7 | 0.513 6 | 0.531 9 | |
[40, 60) | 0.259 8 | 0.395 6 | 0.450 6 | 0.315 6 | 0.513 2 | 0.530 7 | |
[20, 50) | 0.258 5 | 0.395 3 | 0.449 4 | 0.314 0 | 0.512 9 | 0.530 4 | |
[30, 80) | 0.257 6 | 0.395 2 | 0.448 9 | 0.312 9 | 0.512 7 | 0.530 4 |
Tab.5
Statistics of SOH estimation error of LCO batteries
电池编号 | 10%~20% SOC | 50%~60% SOC | |||
---|---|---|---|---|---|
MAE/% | RMSE/% | MAE/% | RMSE/% | ||
LCO cell 3 | 0.8013 | 0.9870 | 0.3432 | 0.4223 | |
LCO cell 4 | 0.9398 | 1.1011 | 0.3692 | 0.4622 | |
LCO cell 5 | 0.9081 | 1.0812 | 0.3643 | 0.4511 | |
LCO cell 6 | 0.8733 | 1.0893 | 0.3904 | 0.4654 | |
LCO cell 7 | 0.9209 | 1.1196 | 0.4047 | 0.5120 | |
LCO cell 8 | 0.8405 | 1.0691 | 0.4392 | 0.5416 |
Tab.6
Statistics of SOH estimation error of different SOH estimation methods[10,29]
方法 | 编号 | 测试 样本量 | 所需电压 区间/V | MAE/ % | RMSE/ % |
---|---|---|---|---|---|
ICP+GPR | 1 | 366 | 3.2~4.1 | 0.4091 | 0.5331 |
CTEVI+GPR | 2 | 366 | 3.55~4.15 | 0.2726 | 0.3212 |
ΔMOR+LR | 3 | 2928 | — | 0.5593 | 0.7574 |
ΔMOR+SVR | 4 | 2928 | — | 0.6013 | 0.7749 |
ΔMOR+GPR | 5 | 2928 | — | 0.5163 | 0.6590 |
ΔMOR+SGPR | 6 | 2928 | — | 0.4543 | 0.6108 |
CNN | 7 | 123 | 3.0~4.2 | 0.9400 | - |
[1] | ALLAM A, ONORI S. Online capacity estimation for lithium-ion battery cells via an electrochemical model-based adaptive interconnected observer[J]. IEEE Transactions on Control Systems Technology, 2021, 29(4): 1636-1651. |
[2] | TIAN J Q, XU R L, WANG Y J, et al. Capacity attenuation mechanism modeling and health assessment of lithium-ion batteries[J]. Energy, 2021, 221: 119682. |
[3] | CHEN L, DING Y H, WANG H M, et al. Online estimating state of health of lithium-ion batteries using hierarchical extreme learning machine[J]. IEEE Transactions on Transportation Electrification, 2022, 8(1): 965-975. |
[4] | MA Z Y, YANG R X, WANG Z P. A novel data-model fusion state-of-health estimation approach for lithium-ion batteries[J]. Applied Energy, 2019, 237: 836-847. |
[5] | ZHOU L T, ZHAO Y, LI D, et al. State-of-health estimation for LiFePO4 battery system on real-world electric vehicles considering aging stage[J]. IEEE Transactions on Transportation Electrification, 2022, 8(2): 1724-1733. |
[6] | 董明, 范文杰, 刘王泽宇, 等. 基于特征频率阻抗的锂离子电池健康状态评估[J]. 中国电机工程学报, 2022, 42(24): 9094-9104. |
DONG Ming, FAN Wenjie, LIU Wangzeyu, et al. Health assessment of lithium-ion batteries based on characteristic frequency impedance[J]. Proceedings of the CSEE, 2022, 42(24): 9094-9104. | |
[7] | 李建林, 李雅欣, 陈光, 等. 退役动力电池健康状态特征提取及评估方法综述[J]. 中国电机工程学报, 2022, 42(4): 1332-1346. |
LI Jianlin, LI Yaxin, CHEN Guang, et al. Research on feature extraction and SOH evaluation methods for retired power battery[J]. Proceedings of the CSEE, 2022, 42(4): 1332-1346. | |
[8] | YANG S J, ZHANG C P, JIANG J C, et al. Review on state-of-health of lithium-ion batteries: Characterizations, estimations and applications[J]. Journal of Cleaner Production, 2021, 314: 128015. |
[9] | HU X S, CHE Y H, LIN X K, et al. Battery health prediction using fusion-based feature selection and machine learning[J]. IEEE Transactions on Transportation Electrification, 2021, 7(2): 382-398. |
[10] | 王萍, 弓清瑞, 张吉昂, 等. 一种基于数据驱动与经验模型组合的锂电池在线健康状态预测方法[J]. 电工技术学报, 2021, 36(24): 5201-5212. |
WANG Ping, GONG Qingrui, ZHANG Jiang, et al. An online state of health prediction method for lithium batteries based on combination of data-driven and empirical model[J]. Transactions of China Electrotechnical Society, 2021, 36(24): 5201-5212. | |
[11] | WEI Z B, RUAN H K, LI Y, et al. Multistage state of health estimation of lithium-ion battery with high tolerance to heavily partial charging[J]. IEEE Transactions on Power Electronics, 2022, 37(6): 7432-7442. |
[12] |
卢地华, 陈自强. 基于双充电状态的锂离子电池健康状态估计[J]. 上海交通大学学报, 2022, 56(3): 342-352.
doi: 10.16183/j.cnki.jsjtu.2021.027 |
LU Dihua, CHEN Ziqiang. State of health estimation of lithium-ion batteries based on dual charging state[J]. Journal of Shanghai Jiao Tong University, 2022, 56(3): 342-352. | |
[13] | TAN X J, ZHAN D, LYU P X, et al. Online state-of-health estimation of lithium-ion battery based on dynamic parameter identification at multi timescale and support vector regression[J]. Journal of Power Sources, 2021, 484: 229233. |
[14] | DENG Z W, HU X S, LI P H, et al. Data-driven battery state of health estimation based on random partial charging data[J]. IEEE Transactions on Power Electronics, 2022, 37(5): 5021-5031. |
[15] | QIAN C, XU B H, CHANG L, et al. Convolutional neural network based capacity estimation using random segments of the charging curves for lithium-ion batteries[J]. Energy, 2021, 227: 120333. |
[16] | 李超然, 肖飞, 樊亚翔, 等. 基于卷积神经网络的锂离子电池SOH估算[J]. 电工技术学报, 2020, 35(19): 4106-4119. |
LI Chaoran, XIAO Fei, FAN Yaxiang, et al. An approach to lithium-ion battery SOH estimation based on convolutional neural network[J]. Transactions of China Electrotechnical Society, 2020, 35(19): 4106-4119. | |
[17] | TAN Y D, ZHAO G C. Transfer learning with long short-term memory network for state-of-health prediction of lithium-ion batteries[J]. IEEE Transactions on Industrial Electronics, 2020, 67(10): 8723-8731. |
[18] | ZHANG C H, KANG Y Z, DUAN B, et al. An adaptive battery capacity estimation method suitable for random charging voltage range in electric vehicles[J]. IEEE Transactions on Industrial Electronics, 2022, 69(9): 9121-9132. |
[19] | BIRKL C, HOWEY D. Oxford battery degradation dataset 1[DB/OL]. (2017-01-01)[2022-06-10]. https://ora.ox.ac.uk/objects/uuid:03ba4b01-cfed-46d3-9b1a-7d4a7bdf6fac. |
[20] |
刘海东, 周萍, 周正, 等. 锂离子电池开路电压快速估计研究[J]. 机械工程学报, 2022, 58(8): 227-235.
doi: 10.3901/JME.2022.08.227 |
LIU Haidong, ZHOU Ping, ZHOU Zheng, et al. Fast estimation of open circuit voltage for lithium-ion batteries[J]. Journal of Mechanical Engineering, 2022, 58(8): 227-235.
doi: 10.3901/JME.2022.08.227 |
|
[21] | BIAN X L, WEI Z B, LI W H, et al. State-of-health estimation of lithium-ion batteries by fusing an open circuit voltage model and incremental capacity analysis[J]. IEEE Transactions on Power Electronics, 2022, 37(2): 2226-2236. |
[22] | FARMANN A, SAUER D U. A study on the dependency of the open-circuit voltage on temperature and actual aging state of lithium-ion batteries[J]. Journal of Power Sources, 2017, 347: 1-13. |
[23] | AMINE K, LIU J, BELHAROUAK I. High-temperature storage and cycling of C-LiFePO4/graphite Li-ion cells[J]. Electrochemistry Communications, 2005, 7(7): 669-673. |
[24] | CANDELA J Q, RASMUSSEN C E. A unifying view of sparse approximate Gaussian process regression[J]. Journal of Machine Learning Research, 2005, 6: 1939-1959. |
[25] | BIJL H, VAN WINGERDEN J W, SCHÖN T B, et al. Online sparse Gaussian process regression using FITC and PITC approximations[J]. IFAC-PapersOnLine, 2015, 48(28): 703-708. |
[26] | CARL E R, HANNES N. Documentation for GPML Matlab Code version 4.2[CP/OL]. (2020-07-14)[2022-06-10]. http://gaussianprocess.org/gpml/code/matlab/doc/. |
[27] | TAN X J, ZHAN D, LYU P X, et al. Online state-of-health estimation of lithium-ion battery based on dynamic parameter identification at multi timescale and support vector regression[J]. Journal of Power Sources, 2021, 484: 229233. |
[28] | XU T T, PENG Z, LIU D G, et al. A hybrid drive method for capacity prediction of lithium-ion batteries[J]. IEEE Transactions on Transportation Electrification, 2022, 8(1): 1000-1012. |
[29] | JIANG B, DAI H F, WEI X Z. Incremental capacity analysis based adaptive capacity estimation for lithium-ion battery considering charging condition[J]. Applied Energy, 2020, 269: 115074. |
[1] | SUN Zhiwei, HU Xiong, DONG Kai, SUN Dejian, LIU Yang. RUL Prediction Method for Quay Crane Hoisting Gearbox Bearing Based on LSTM-CAPF Framework [J]. Journal of Shanghai Jiao Tong University, 2024, 58(3): 352-360. |
[2] | CHEN Kun(陈坤), ZHAO Xu(赵旭), DONG Chunyu(董春玉), DI Zichao(邸子超), CHEN Zongzhi(陈宗枝). Anti-Occlusion Object Tracking Algorithm Based on Filter Prediction [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 400-413. |
[3] | QU Keqing, DONG Hao, MAO Ling, ZHAO Jinbin, YANG Jianlin, LI Fen. SOH Online Estimation of Lithium-Ion Batteries Based on Fusion Health Factor and Integrated Extreme Learning Machine [J]. Journal of Shanghai Jiao Tong University, 2024, 58(3): 263-272. |
[4] | ZHANG Xiaoyuan, ZHANG Jinhao, YANG Lixin. Interval Estimation of State of Health for Lithium Batteries Considering Different Charging Strategies [J]. Journal of Shanghai Jiao Tong University, 2024, 58(3): 273-284. |
[5] | XU Hongdong, GAO Haibo, XU Xiaobin, LIN Zhiguo, SHENG Chenxing. State of Health Estimation of Lithium-ion Battery Using a CS-SVR Model Based on Evidence Reasoning Rule [J]. Journal of Shanghai Jiao Tong University, 2022, 56(4): 413-421. |
[6] | LU Dihua, CHEN Ziqiang. [J]. Journal of Shanghai Jiao Tong University, 2022, 56(3): 342-352. |
[7] | HUANG He, WU Kun, LI Xinrui, WANG Jun, WANG Huifeng, RU Feng. A Multi-Feature Particle Filter Vehicle Tracking Algorithm Based on Adaptive Interpolation Moth-Flame Optimization [J]. Journal of Shanghai Jiao Tong University, 2022, 56(2): 143-155. |
[8] | GAO Honglian, YOU Jie, CAO Songyin. In-Flight Alignment Method of Integrated SINS/GPS Navigation System Based on Combined PF-UKF Filter [J]. Journal of Shanghai Jiao Tong University, 2022, 56(11): 1447-1452. |
[9] | JIANG Yu, CHEN Ziqiang. Average Temperature Estimation for Lithium-Ion Batteries at Variable Environment Temperature [J]. Journal of Shanghai Jiao Tong University, 2021, 55(7): 781-790. |
[10] | HOU Yuguan, HAN Yuanpeng, XIE Jinyue, MAO Xingpeng. A Radar DOA Tracking Method for Multiple Targets Based on SDE Model [J]. Air & Space Defense, 2021, 4(1): 41-46. |
[11] | PENG Pai, CHEN Cong , YANG Yongsheng . Particle Swarm Optimization Based on Hybrid Kalman Filter and Particle Filter [J]. J Shanghai Jiaotong Univ Sci, 2020, 25(6): 681-688. |
[12] | LIU Jian,CHEN Ziqiang,HUANG Deyang,ZHENG Changwen,ZHOU Shiyao,JIANG Yu. Remaining Useful Life Prediction for Lithium-Ion Batteries Based on Time Interval of Equal Charging Voltage Difference [J]. Journal of Shanghai Jiaotong University, 2019, 53(9): 1058-1065. |
[13] | BI Xiaojun,HU Songyi. Firefly Algorithm with High Precision Mixed Strategy Optimized Particle Filter [J]. Journal of Shanghai Jiaotong University, 2019, 53(2): 232-238. |
[14] | ZHANG Liang (张梁), BAO Qilian *(鲍其莲), CUI Ke (崔科), JIANG Yaodong (蒋耀东), XU Haigui (徐海贵), DU Yuding (杜雨丁). Particle Filter and Its Application in the Integrated Train Speed Measurement [J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(1): 130-136. |
[15] | SUN Yiqi,WU Aiguo,DONG Na,SHAO Yizhe. A Novel Algorithm for Hand Tracking with Particle Filter and Improved GVF Snake [J]. Journal of Shanghai Jiaotong University, 2018, 52(7): 801-807. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||