Journal of Shanghai Jiao Tong University ›› 2022, Vol. 56 ›› Issue (4): 413-421.doi: 10.16183/j.cnki.jsjtu.2021.345
Special Issue: 《上海交通大学学报》“新型电力系统与综合能源”专题(2022年1~6月)
• New Type Power System and the Integrated Energy • Previous Articles Next Articles
XU Hongdong1, GAO Haibo1(), XU Xiaobin2, LIN Zhiguo1, SHENG Chenxing1
Received:
2021-09-13
Online:
2022-04-28
Published:
2022-05-07
Contact:
GAO Haibo
E-mail:hbgao_whut@126.com
CLC Number:
XU Hongdong, GAO Haibo, XU Xiaobin, LIN Zhiguo, SHENG Chenxing. State of Health Estimation of Lithium-ion Battery Using a CS-SVR Model Based on Evidence Reasoning Rule[J]. Journal of Shanghai Jiao Tong University, 2022, 56(4): 413-421.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2021.345
[1] |
MISYRIS G S, MARINOPOULOS A, DOUKAS D I, et al. On battery state estimation algorithms for electric ship applications[J]. Electric Power Systems Research, 2017, 151: 115-124.
doi: 10.1016/j.epsr.2017.05.009 URL |
[2] | XU D P, WANG L F, YANG J. Research on Li-ion battery management system [C]//2010 International Conference on Electrical and Control Engineering. Wuhan, China: IEEE, 2010: 4106-4109. |
[3] | MA G J, YU C H, HE Z W, et al. Estimation of Li-ion battery SOH using Fletcher-Reeves based ANFIS [C]//2015 IEEE 24th International Symposium on Industrial Electronics. Buzios, Brazil: IEEE, 2015: 827-830. |
[4] | LOTFI N, LI J, LANDERS R G, et al. Li-ion battery state of health estimation based on an improved single particle model [C]//2017 American Control Conference. Seattle, USA: IEEE, 2017: 86-91. |
[5] |
BERECIBAR M, GANDIAGA I, VILLARREAL I, et al. Critical review of state of health estimation methods of Li-ion batteries for real applications[J]. Renewable and Sustainable Energy Reviews, 2016, 56: 572-587.
doi: 10.1016/j.rser.2015.11.042 URL |
[6] | 张新锋, 饶勇翔, 姚蒙蒙. 基于支持向量回归的锂电池健康状态估计[J]. 中北大学学报(自然科学版), 2019, 40(6): 511-516. |
ZHANG Xinfeng, RAO Yongxiang, YAO Mengmeng. Estimation of lithium battery state of health based on support vector regression[J]. Journal of North University of China (Natural Science Edition), 2019, 40(6): 511-516. | |
[7] |
QU J T, LIU F, MA Y X, et al. A neural-network-based method for RUL prediction and SOH moni-toring of lithium-ion battery[J]. IEEE Access, 2019, 7: 87178-87191.
doi: 10.1109/ACCESS.2019.2925468 URL |
[8] |
YANG D, WANG Y J, PAN R, et al. State-of-health estimation for the lithium-ion battery based on support vector regression[J]. Applied Energy, 2018, 227: 273-283.
doi: 10.1016/j.apenergy.2017.08.096 URL |
[9] |
ZENG M M, ZHANG P, YANG Y, et al. SOC and SOH joint estimation of the power batteries based on fuzzy unscented Kalman filtering algorithm[J]. Energies, 2019, 12(16): 3122.
doi: 10.3390/en12163122 URL |
[10] |
CHANG C, WANG Q Y, JIANG J C, et al. Lithium-ion battery state of health estimation using the incremental capacity and wavelet neural networks with genetic algorithm[J]. Journal of Energy Storage, 2021, 38: 102570.
doi: 10.1016/j.est.2021.102570 URL |
[11] |
CHENG G, WANG X Z, HE Y R. Remaining useful life and state of health prediction for lithium batteries based on empirical mode decomposition and a long and short memory neural network[J]. Energy, 2021, 232: 121022.
doi: 10.1016/j.energy.2021.121022 URL |
[12] |
WENG C H, SUN J, PENG H E. Model parametrization and adaptation based on the invariance of support vectors with applications to battery state-of-health monitoring[J]. IEEE Transactions on Vehicular Technology, 2015, 64(9): 3908-3917.
doi: 10.1109/TVT.2014.2364554 URL |
[13] | 刘皓, 胡明昕, 朱一亨, 等. 基于遗传算法和支持向量回归的锂电池健康状态预测[J]. 南京理工大学学报, 2018, 42(3): 329-334. |
LIU Hao, HU Mingxin, ZHU Yiheng, et al. Prediction for state of health of lithium-ion batteries by genetic algorithm and support vector regression[J]. Journal of Nanjing University of Science and Technology, 2018, 42(3): 329-334. | |
[14] |
NG S S Y, XING Y J, TSUI K L. A naive Bayes model for robust remaining useful life prediction of lithium-ion battery[J]. Applied Energy, 2014, 118: 114-123.
doi: 10.1016/j.apenergy.2013.12.020 URL |
[15] |
WEI J W, DONG G Z, CHEN Z H. Remaining useful life prediction and state of health diagnosis for lithium-ion batteries using particle filter and support vector regression[J]. IEEE Transactions on Industrial Electronics, 2018, 65(7): 5634-5643.
doi: 10.1109/TIE.2017.2782224 URL |
[16] | XU X B, JIN Z, YANG J B, et al. Track irregularity fault identification based on evidence reasoning rule [C]//2016 IEEE International Conference on Intelligent Rail Transportation. Birmingham, UK: IEEE, 2016: 298-306. |
[17] | XU X B, ZHANG Z, ZHENG J, et al. State estimation method based on evidential reasoning rule [C]//2015 IEEE Advanced Information Technology, Electronic and Automation Control Conference. Chongqing, China: IEEE, 2015: 610-617. |
[18] |
GAO H B, LIAO L H, HE Y L, et al. Improved control of propeller ventilation using an evidence reasoning rule based Adaboost.M1 approach[J]. Ocean Engineering, 2020, 209: 107329.
doi: 10.1016/j.oceaneng.2020.107329 URL |
[19] |
GHAZVINIAN H, MOUSAVI S F, KARAMI H, et al. Integrated support vector regression and an improved particle swarm optimization-based model for solar radiation prediction[J]. PLoS One, 2019, 14(5): e0217634.
doi: 10.1371/journal.pone.0217634 URL |
[20] |
YANG Y F, ZHANG M H, DAI Y W. A Fuzzy Comprehensive CS-SVR Model-based health status evaluation of radar[J]. PLoS One, 2019, 14(3): e0213833.
doi: 10.1371/journal.pone.0213833 URL |
[21] |
NI K S, NGUYEN T Q. Image superresolution using support vector regression[J]. IEEE Transactions on Image Processing, 2007, 16(6): 1596-1610.
doi: 10.1109/TIP.2007.896644 URL |
[22] |
YANG X S, DEB S. Multiobjective cuckoo search for design optimization[J]. Computers & Operations Research, 2013, 40(6): 1616-1624.
doi: 10.1016/j.cor.2011.09.026 URL |
[23] |
NARTU T R, MATTA M S, KORATANA S, et al. A fuzzified Pareto multiobjective cuckoo search algorithm for power losses minimization incorporating SVC[J]. Soft Computing, 2019, 23(21): 10811-10820.
doi: 10.1007/s00500-018-3634-7 URL |
[24] |
CHENG J T, WANG L, XIONG Y. Ensemble of cuckoo search variants[J]. Computers & Industrial Engineering, 2019, 135: 299-313.
doi: 10.1016/j.cie.2019.06.015 URL |
[25] | SAHA B, GOEBEL K. Battery data set[R]. California: NASA Ames Prognostics Data Repository, 2007. |
[26] |
QIN T C, ZENG S K, GUO J B. Robust prognostics for state of health estimation of lithium-ion batteries based on an improved PSO-SVR model[J]. Microelectronics Reliability, 2015, 55(9/10): 1280-1284.
doi: 10.1016/j.microrel.2015.06.133 URL |
[27] | PEDREGOSA F, VAROQUAUX G, GRAMFORT A, et al. Scikit-learn: Machine learning in Python[J]. Journal of machine Learning Research, 2011, 12: 2825-2830. |
[28] |
ZHAO F J, ZHOU Z J, HU C H, et al. A new safety assessment method based on evidential reasoning rule with a prewarning function[J]. IEEE Access, 2018, 6: 31862-31871.
doi: 10.1109/ACCESS.2018.2815631 URL |
[29] | LIAO L H, GAO H B, HE Y L, et al. Fault diagnosis of capacitance aging in DC link capacitors of voltage source inverters using evidence reasoning rule[J]. Mathematical Problems in Engineering, 2020, 2020: 1-12. |
[1] | ZHU Chenghao, WANG Han, SUN Guoqi, WEI Xiaobin, WANG Fuwen, CAI Xu. An Identification Method for DC-Link Capacitor Capacitance of Grid Connected Inverter [J]. Journal of Shanghai Jiao Tong University, 2022, 56(6): 693-700. |
[2] | LU Dihua, CHEN Ziqiang. [J]. Journal of Shanghai Jiao Tong University, 2022, 56(3): 342-352. |
[3] | JIANG Yu, CHEN Ziqiang. Average Temperature Estimation for Lithium-Ion Batteries at Variable Environment Temperature [J]. Journal of Shanghai Jiao Tong University, 2021, 55(7): 781-790. |
[4] | LIU Jian,CHEN Ziqiang,HUANG Deyang,ZHENG Changwen,ZHOU Shiyao,JIANG Yu. Remaining Useful Life Prediction for Lithium-Ion Batteries Based on Time Interval of Equal Charging Voltage Difference [J]. Journal of Shanghai Jiaotong University, 2019, 53(9): 1058-1065. |
[5] | JIANG Yilin (蒋伊琳), LIU Mengnan (刘梦楠), CHEN Tao (陈涛), GAO Lipeng (郜丽鹏). TDOA Passive Location Based on Cuckoo Search Algorithm [J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(3): 368-. |
[6] | SU Bai-hua1 (苏柏桦), WANG Ying-lin2* (王英林). Genetic Algorithm Based Feature Selection and Parameter Optimization for Support Vector Regression Applied to Semantic Textual Similarity [J]. Journal of shanghai Jiaotong University (Science), 2015, 20(2): 143-148. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||