Journal of Shanghai Jiao Tong University ›› 2022, Vol. 56 ›› Issue (3): 342-352.doi: 10.16183/j.cnki.jsjtu.2021.027
Special Issue: 《上海交通大学学报》“新型电力系统与综合能源”专题(2022年1~6月)
• New Type Power System and the Integrated Energy • Previous Articles Next Articles
Received:
2021-01-25
Online:
2022-03-28
Published:
2022-04-01
Contact:
CHEN Ziqiang
E-mail:chenziqiang@sjtu.edu.cn
CLC Number:
LU Dihua, CHEN Ziqiang. [J]. Journal of Shanghai Jiao Tong University, 2022, 56(3): 342-352.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2021.027
Tab.2
Forecast results of different optimization algorithms
电池编号 | 起始循环 | 优化算法 | RMSE | MAPE |
---|---|---|---|---|
B5 | 第111次 | PSO_SVR | 0.0053 | 0.0052 |
B5 | 第111次 | GA_SVR | 0.0084 | 0.0107 |
B6 | 第111次 | PSO_SVR | 0.0151 | 0.0205 |
B6 | 第111次 | GA_SVR | 0.0338 | 0.0473 |
B7 | 第111次 | PSO_SVR | 0.0061 | 0.0062 |
B7 | 第111次 | GA_SVR | 0.0177 | 0.0206 |
B18 | 第91次 | PSO_SVR | 0.0106 | 0.0075 |
B18 | 第91次 | GA_SVR | 0.0142 | 0.0183 |
[1] | 周诗尧, 陈自强, 黄德扬, 等. 轻度混合动力船舶储能系统研究[J]. 装备环境工程, 2018, 15(12):55-59. |
ZHOU Shiyao, CHEN Ziqiang, HUANG Deyang, et al. Energy storage system of mild hybrid ship[J]. Equipment Environmental Engineering, 2018, 15(12):55-59. | |
[2] |
CHENG Y J, LU C, LI T Y, et al. Residual lifetime prediction for lithium-ion battery based on functional principal component analysis and Bayesian approach[J]. Energy, 2015, 90:1983-1993.
doi: 10.1016/j.energy.2015.07.022 URL |
[3] |
REMMLINGER J, BUCHHOLZ M, MEILER M, et al. State-of-health monitoring of lithium-ion batteries in electric vehicles by on-board internal resistance estimation[J]. Journal of Power Sources, 2011, 196(12):5357-5363.
doi: 10.1016/j.jpowsour.2010.08.035 URL |
[4] | 刘江波. 基于内阻检测的锂电池健康状态估计研究[D]. 武汉: 武汉理工大学, 2015. |
LIU Jiangbo. Research on SOH estimation of Li-ion battery based on internal resistance[D]. Wuhan: Wuhan University of Technology, 2015. | |
[5] |
LIU D T, ZHOU J B, LIAO H T, et al. A health indicator extraction and optimization framework for lithium-ion battery degradation modeling and prognostics[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2015, 45(6):915-928.
doi: 10.1109/TSMC.2015.2389757 URL |
[6] |
ZHOU Y P, HUANG M H, CHEN Y P, et al. A novel health indicator for on-line lithium-ion batteries remaining useful life prediction[J]. Journal of Power Sources, 2016, 321:1-10.
doi: 10.1016/j.jpowsour.2016.04.119 URL |
[7] | HU X S, JIANG J C, CAO D P, et al. Battery health prognosis for electric vehicles using sample entropy and sparse Bayesian predictive modeling[J]. IEEE Transactions on Industrial Electronics, 2016, 63(4):2645-2656. |
[8] |
LI J F, WANG L X, LYU C, et al. A method of remaining capacity estimation for lithium-ion battery[J]. Advances in Mechanical Engineering, 2013, 5:154831.
doi: 10.1155/2013/154831 URL |
[9] | 孙培坤. 电动汽车动力电池健康状态估计方法研究[D]. 北京: 北京理工大学, 2016. |
SUN Peikun. Research of state of health estimation method for electric vehicle lithium-ion power battery[D]. Beijing: Beijing Institute of Technology, 2016. | |
[10] | 郭永芳, 黄凯, 李志刚. 基于短时搁置端电压压降的快速锂离子电池健康状态预测[J]. 电工技术学报, 2019, 34(19):3968-3978. |
GUO Yongfang, HUANG Kai, LI Zhigang. Fast state of health prediction of lithium-ion battery based on terminal voltage drop during rest for short time[J]. Transactions of China Electrotechnical Society, 2019, 34(19):3968-3978. | |
[11] | 潘海鸿, 吕治强, 付兵, 等. 采用极限学习机实现锂离子电池健康状态在线估算[J]. 汽车工程, 2017, 39(12):1375-1381. |
PAN Haihong, LÜ Zhiqiang, FU Bing, et al. Online estimation of lithium-ion battery’s state of health using extreme learning machine[J]. Automotive Engineering, 2017, 39(12):1375-1381. | |
[12] |
MENG J H, CAI L, STROE D I, et al. Lithium-ion battery state-of-health estimation in electric vehicle using optimized partial charging voltage profiles[J]. Energy, 2019, 185:1054-1062.
doi: 10.1016/j.energy.2019.07.127 URL |
[13] |
BIAN X L, LIU L C, YAN J Y. A model for state-of-health estimation of lithium ion batteries based on charging profiles[J]. Energy, 2019, 177:57-65.
doi: 10.1016/j.energy.2019.04.070 URL |
[14] |
WENG C H, CUI Y J, SUN J, et al. On-board state of health monitoring of lithium-ion batteries using incremental capacity analysis with support vector regression[J]. Journal of Power Sources, 2013, 235:36-44.
doi: 10.1016/j.jpowsour.2013.02.012 URL |
[15] | 刘健, 陈自强, 黄德扬, 等. 基于等压差充电时间的锂离子电池寿命预测[J]. 上海交通大学学报, 2019, 53(9):1058-1065. |
LIU Jian, CHEN Ziqiang, HUANG Deyang, et al. Remaining useful life prediction for lithium-ion batteries based on time interval of equal charging voltage difference[J]. Journal of Shanghai Jiao Tong University, 2019, 53(9):1058-1065. | |
[16] |
YANG J F, XIA B, HUANG W X, et al. Online state-of-health estimation for lithium-ion batteries using constant-voltage charging current analysis[J]. Applied Energy, 2018, 212:1589-1600.
doi: 10.1016/j.apenergy.2018.01.010 URL |
[17] |
HUANG D Y, CHEN Z Q, ZHENG C W, et al. A model-based state-of-charge estimation method for series-connected lithium-ion battery pack considering fast-varying cell temperature[J]. Energy, 2019, 185:847-861.
doi: 10.1016/j.energy.2019.07.063 URL |
[18] |
刘轶鑫, 张頔, 李雪, 等. 基于SOC-OCV曲线特征的SOH估计方法研究[J]. 汽车工程, 2019, 41(10):1158-1163.
doi: 10.19562/j.chinasae.qcgc.2019.010.008 |
LIU Yixin, ZHANG Di, LI Xue, et al. A research on SOH estimation method based on SOC-OCV curve characteristics[J]. Automotive Engineering, 2019, 41(10):1158-1163. | |
[19] |
WANG Z K, ZENG S K, GUO J B, et al. State of health estimation of lithium-ion batteries based on the constant voltage charging curve[J]. Energy, 2019, 167:661-669.
doi: 10.1016/j.energy.2018.11.008 URL |
[20] |
LI X Y, WANG Z P, ZHANG L, et al. State-of-health estimation for Li-ion batteries by combing the incremental capacity analysis method with grey relational analysis[J]. Journal of Power Sources, 2019, 410/411:106-114.
doi: 10.1016/j.jpowsour.2018.10.069 URL |
[1] | ZHU Chenghao, WANG Han, SUN Guoqi, WEI Xiaobin, WANG Fuwen, CAI Xu. An Identification Method for DC-Link Capacitor Capacitance of Grid Connected Inverter [J]. Journal of Shanghai Jiao Tong University, 2022, 56(6): 693-700. |
[2] | XU Hongdong, GAO Haibo, XU Xiaobin, LIN Zhiguo, SHENG Chenxing. State of Health Estimation of Lithium-ion Battery Using a CS-SVR Model Based on Evidence Reasoning Rule [J]. Journal of Shanghai Jiao Tong University, 2022, 56(4): 413-421. |
[3] | JIANG Yu, CHEN Ziqiang. Average Temperature Estimation for Lithium-Ion Batteries at Variable Environment Temperature [J]. Journal of Shanghai Jiao Tong University, 2021, 55(7): 781-790. |
[4] | GUO Longlong, WU Zebing, HE Yutian, WEI Wenlan, XIA Shengyong, JU Luyan, WANG Bo , ZHANG Yong. Prediction of Formation Quality of Inconel 625 Clads Using Support Vector Regression [J]. J Shanghai Jiaotong Univ Sci, 2020, 25(6): 746-754. |
[5] | LIU Jian,CHEN Ziqiang,HUANG Deyang,ZHENG Changwen,ZHOU Shiyao,JIANG Yu. Remaining Useful Life Prediction for Lithium-Ion Batteries Based on Time Interval of Equal Charging Voltage Difference [J]. Journal of Shanghai Jiaotong University, 2019, 53(9): 1058-1065. |
[6] | TANG Xianlun (唐贤伦), LIU Nianci (刘念慈), WAN Yali (万亚利), GUO Fei (郭飞). Multi-Step Model Predictive Control Based on Online Support Vector Regression Optimized by Multi-Agent Particle Swarm Optimization Algorithm [J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(5): 607-612. |
[7] | SU Bai-hua1 (苏柏桦), WANG Ying-lin2* (王英林). Genetic Algorithm Based Feature Selection and Parameter Optimization for Support Vector Regression Applied to Semantic Textual Similarity [J]. Journal of shanghai Jiaotong University (Science), 2015, 20(2): 143-148. |
[8] | WANG Hongjian,XU Jinlong,LIU Xiangbo,LI Juan,ZHANG Aihua. Adaptive Divided Difference Filter Algorithm Based on Support Vector Regression [J]. Journal of Shanghai Jiaotong University, 2014, 48(07): 929-935. |
[9] | WANG Xiaolong,CAI Qi,CHEN Yuqing. Abnormal Parameter Reconstruction for Marine Nuclear Power Plant Based on MultiSignal Coupling [J]. Journal of Shanghai Jiaotong University, 2014, 48(02): 210-213. |
[10] | REN Hui-Feng, YANG Chun-Hua, ZHOU Xuan, GUI Wei-Hua, YAN Feng. Robust SoftSensing of Slurry pH Using LSSVR for Mineral Flotation Process [J]. Journal of Shanghai Jiaotong University, 2011, 45(08): 1136-1139. |
[11] | ZHANG Hong-Wei, SONG Zhi-Huan. A Copper Compositions Soft Sensor Using Color Vision and LSSVR [J]. Journal of Shanghai Jiaotong University, 2011, 45(08): 1211-1215. |
[12] | HU You-Tao, HU Chang-Hua. A Real-Time Lifetime Prediction Method Based on Wavelet Support Vector Regression Optimized by GA [J]. Journal of Shanghai Jiaotong University, 2011, 45(08): 1216-1220. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||