J Shanghai Jiaotong Univ Sci ›› 2020, Vol. 25 ›› Issue (6): 681-688.doi: 10.1007/s12204-020-2229-5
PENG Pai (彭湃), CHEN Cong (陈聪), YANG Yongsheng (杨永胜)
Online:
2020-12-28
Published:
2020-11-26
Contact:
YANG Yongsheng (杨永胜)
E-mail:ysyang@sjtu.edu.cn
CLC Number:
PENG Pai, CHEN Cong , YANG Yongsheng . Particle Swarm Optimization Based on Hybrid Kalman Filter and Particle Filter [J]. J Shanghai Jiaotong Univ Sci, 2020, 25(6): 681-688.
[1] | KENNEDY J. Small worlds and mega-minds: Effects of neighborhood topology on particle swarm performance[C]//Proceedings of the 1999 Congress on Evolutionary Computation-CEC99. Washington, DC,USA: IEEE, 1999: 1931-1938. |
[2] | KENNEDY J, EBERHART R. Particle swarm optimization[C]//IEEE International Conference on Neural Networks. Perth, Australia: IEEE, 1995: 1942-1948. |
[3] | CHAUHAN P, DEEP K, PANT M. Novel inertia weight strategies for particle swarm optimization [J].Memetic Computing, 2013, 5(3): 229-251. |
[4] | MENDES R, KENNEDY J, NEVES J. Watch the neighbor or how the swarm can learn from its environment[C]//Proceedings of the 2003 IEEE Swarm Intelligence Symposium. Indianapolis, IN, USA: IEEE,2003: 88-94. |
[5] | MENDES R, KENNEDY J, NEVES J. The fully informed particle swarm: Simpler, maybe better[J]. IEEE Transactions on Evolutionary Computation,2004, 8(3): 204-210. |
[6] | KENNEDY J, MENDES R. Neighborhood topologies in fully-informed and best-of-neighborhood particle swarms [J]. IEEE Transactions on Systems, Man,and Cybernetics, Part C (Applications and Reviews),2006, 36(4): 515-519. |
[7] | SHI Y H, EBERHART R. A modified particle swarm optimizer [C]//Proceedings of the 1998 IEEE International Conference On Evolutionary Computation. Anchorage,AK, USA: IEEE, 1998: 69-73. |
[8] | SHI Y H, EBERHART R C. Fuzzy adaptive particle swarm optimization [C]//Proceedings of the 2001 Congress on Evolutionary Computation. Seoul, South Korea: IEEE, 2001: 101-106. |
[9] | CLERCM, KENNEDYJ. The particle swarm: Explosion,stability, and convergence in a multidimensional complex space [J]. IEEE Transactions on Evolutionary Computation, 2002, 6(1): 58-73. |
[10] | RATNAWEERA A, HALGAMUGE S K, WATSON H C. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients [J].IEEE Transactions on Evolutionary Computation,2004, 8(3): 240-255. |
[11] | ZHAN Z H, ZHANG J, LI Y, et al. Adaptive particle swarm optimization [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),2009, 39(6): 1362-1381. |
[12] | NICKABADI A, EBADZADEHMM, SAFABAKHSH R. A novel particle swarm optimization algorithm with adaptive inertia weight [J]. Applied Soft Computing,2011, 11(4): 3658-3670. |
[13] | ZAHARIS Z D, GRAVAS I P, YIOULTSIS T V, et al. Exponential log-periodic antenna design using improved particle swarm optimization with velocity mutation[J]. IEEE Transactions on Magnetics, 2017,53(6): 7204104. |
[14] | YAN X H, HE F Z, HOU N, et al. An efficient particle swarm optimization for large-scale hardware/software co-design system [J]. International Journal of Cooperative Information Systems, 2018, 27(1): 1741001. |
[15] | LI C H, YANG S X, NGUYEN T T. A self-learning particle swarm optimizer for global optimization problems[J]. IEEE Transactions on Systems, Man, and Cybernetics,Part B (Cybernetics), 2012, 42(3): 627-646. |
[16] | TANWEER M R, SURESH S, SUNDARARAJAN N.Self regulating particle swarm optimization algorithm[J]. Information Sciences, 2015, 294: 182-202. |
[17] | MONSON C K, SEPPI K D. The Kalman swarm:A new approach to particle motion in swarm optimization[J]. Lecture Notes in Computer Science, 2004,3102: 140-150. |
[18] | XU Y F, CHEN G C, YU J S. The Kalman particle swarm optimization algorithm and its application in soft-sensor of acrylonitrile yield [M]//Advances in natural computation. Berlin, Germany: Springer, 2006:176-179. |
[19] | M¨AKIL¨A P M, PAATTILAMMI J. Steady-state Kalman-filtering with nonstationary noise [J]. Optimal Control Applications and Methods, 2003, 24(2): 57-71. |
[20] | WU Y L, LIU G, GUO X P, et al. A self-adaptive chaos and Kalman filter-based particle swarm optimization for economic dispatch problem [J]. Soft Computing,2017, 21: 3353-3365. |
[21] | NUMMIARO K, KOLLER-MEIER E, VAN GOOL L.An adaptive color-based particle filter [J]. Image and Vision Computing, 2003, 21(1): 99-110. |
[22] | PEI F J, CUI P Y, CHEN Y Z. AdaptiveMCMC particle filter for nonlinear and non-Gaussian state estimation[C]//Proceedings of the 3rd International Conference on Innovative Computing Information and Control.Dalian, China: IEEE, 2008: 494-494. |
[23] | DOUCET A, FREITAS N D, GORDON N. Sequential Monte Carlo methods in practice [M]. New York, USA:Springer-Verlag, 2001: 106. |
[1] | WANG Mingyang (王明阳), SHI Liangren∗ (时良仁), LI Yuanlong (李元龙). Indoor Vehicle Positioning Based on Multi-Sensor Data Fusion [J]. J Shanghai Jiaotong Univ Sci, 2023, 28(1): 77-85. |
[2] | JIANG Junhao, CHEN Gang. Dynamic Model Predictive Control Method for Steering Control of Driving Robot [J]. Journal of Shanghai Jiao Tong University, 2022, 56(5): 594-603. |
[3] | ZHAO Yong, SU Dan. Rogue Wave Prediction Based on Four Combined Long Short-Term Memory Neural Network Models [J]. Journal of Shanghai Jiao Tong University, 2022, 56(4): 516-522. |
[4] | YANG Tao (杨 涛), ZHAO Jiankang∗ (赵健康). Solution to Long-Range Continuous and Precise Positioning in Deep Ocean for Autonomous Underwater Vehicles Using Acoustic Range Estimation and Inertial Sensor Measurements [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(3): 281-297. |
[5] | HUANG He, WU Kun, LI Xinrui, WANG Jun, WANG Huifeng, RU Feng. A Multi-Feature Particle Filter Vehicle Tracking Algorithm Based on Adaptive Interpolation Moth-Flame Optimization [J]. Journal of Shanghai Jiao Tong University, 2022, 56(2): 143-155. |
[6] | GAO Honglian, YOU Jie, CAO Songyin. In-Flight Alignment Method of Integrated SINS/GPS Navigation System Based on Combined PF-UKF Filter [J]. Journal of Shanghai Jiao Tong University, 2022, 56(11): 1447-1452. |
[7] | ZHANG Wenjia, MA Xin. A Sliding Window Adaptive Filtering Algorithm for Autonomous Navigation of the Approach Phase of Deep Space Probe [J]. Journal of Shanghai Jiao Tong University, 2022, 56(11): 1461-1469. |
[8] | HOU Yuguan, HAN Yuanpeng, XIE Jinyue, MAO Xingpeng. A Radar DOA Tracking Method for Multiple Targets Based on SDE Model [J]. Air & Space Defense, 2021, 4(1): 41-46. |
[9] | DONG Xiangxiang, LÜ Runyan, CAI Yunze*. A Variational Bayes-Based Filter with Uncertain Heavy-Tailed Noise [J]. Journal of Shanghai Jiaotong University, 2020, 54(9): 881-889. |
[10] | QIN Zhichang, XIN Ying, SUN Jianqiao . Multi-Objective Optimal Feedback Controls for Under-Actuated Dynamical System [J]. Journal of Shanghai Jiao Tong University(Science), 2020, 25(5): 545-552. |
[11] | CUI Naigang , CAI Ligen, RONG Siyuan. High-speed Gliding Target Tracking Algorithm Based on Digraph Switching IMM-CKF [J]. Air & Space Defense, 2020, 3(3): 1-8. |
[12] | ZHANG Jihua, WEI Yali, LI Zhi, ZHOU Xiaochuan. Research on Filtering Algorithm of Missileborne Single-base Angular Measurement & Passive Positioning [J]. Air & Space Defense, 2020, 3(1): 34-40. |
[13] | HU Bing,YANG Ming,GUO Lindong,WANG Chunxiang,WANG Bing. Global Localization for Intelligent Vehicles Using Ground SURF [J]. Journal of Shanghai Jiaotong University, 2019, 53(2): 203-208. |
[14] | BI Xiaojun,HU Songyi. Firefly Algorithm with High Precision Mixed Strategy Optimized Particle Filter [J]. Journal of Shanghai Jiaotong University, 2019, 53(2): 232-238. |
[15] | LI Chunxiang,PEI Yangcongqi,YIN Xiao. Nonstationary Non-Gaussian Wind Pressure Prediction Using Hermite Combination Kernel Based EMD-WT-LSSVM [J]. Journal of Shanghai Jiaotong University, 2019, 53(10): 1249-1258. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||