[1] TIAN Y J, SUI L F, XIAO G R, et al. Analysis of Galileo/BDS/GPS signals and RTK performance [J]. GPS Solutions, 2019, 23(2): 1-16. 
[2] ODIJK D, NADARAJAH N, ZAMINPARDAZ S, et al. GPS, Galileo, QZSS and IRNSS differential ISBs:Estimation and application [J]. GPS Solutions, 2017,21(2): 439-450. 
[3] AN X D, MENG X L, JIANG W P. Multi-constellation GNSS precise point positioning with multi-frequency raw observations and dual-frequency observations of ionospheric-free linear combination [J]. Satellite Navigation, 2020, 1: 7. 
[4] LIU X, ZHANG S B, ZHANG Q Z, et al. A fast satellite selection algorithm with floating high cut-off elevation angle based on ADOP for instantaneous multi-GNSS single-frequency relative positioning [J]. Advances in Space Research, 2019, 63(3): 1234-1252. 
[5] YAO Y B, LIU L, KONG J, et al. Estimation of BDS DCB combining GIM and different zero-mean constraints [J]. Acta Geodaetica et Cartographica Sinica,2017, 46(2): 135-143(in Chinese). 
[6] GUO X, GENG J H, CHEN X Y, et al. Enhanced orbit determination for formation-flying satellites through integrated single- and double-difference GPS ambiguity resolution [J]. GPS Solutions, 2019, 24: 14. 
[7] ZHANG X H, HU J H, REN X D. New progress of PPP/PPP-RTK and positioning performance comparison of BDS/GNSS PPP [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(9): 1084-1100. 
[8] GAO Y J, LV Z W, ZHOU P J, et al. Adaptive robust filtering algorithm for BDS medium and long baseline three carrier ambiguity resolution [J]. Journal of Geodesy and Geoinformation Science, 2020, 3(2): 53-61. 
[9] WANG X, LIU W X, SUN G F. An improved geometry-free three carrier ambiguity resolution method for the BeiDou navigation satellite system [J].Journal of Navigation, 2016, 69(6): 1393-1408. 
[10] WU G B, CHEN J P, WU X M, et al. Modeling and assessment of regional atmospheric corrections based on undifferenced and uncombined PPP-RTK [J].Acta Geodaetica et Cartographica Sinica, 2020, 49(11):1407-1418(in Chinese). 
[11] CHENG L Y, WANG W, LIU J N, et al. GNSS receiver-related pseudorange biases: Characteristics and effects on wide-lane ambiguity resolution [J]. Remote Sensing, 2021, 13(3): 428. 
[12] BASILE F, MOORE T, HILL C, et al. GPS and Galileo triple-carrier ionosphere-free combinations for improved convergence in precise point positioning [J].Journal of Navigation, 2021, 74(1): 5-23. 
[13] LIU Y Y, YE S R, JIANG P, et al. Combining GPS + GLONASS observations to improve the fixing percentage and precision of long baselines with limited data [J]. Advances in Space Research, 2016, 57(5): 1258-1267. 
[14] ZHU J S, LIU Y Y, WANG B, et al. Improved method for GLONASS long baseline ambiguity resolution without inter-frequency code bias calibration [J]. Remote Sensing, 2018, 10(8): 1223. 
[15] ZHANG Q Y, LIU Y, XIA J M. Space-borne GNSS-Rionospheric delay error elimination by optimal spatial filtering [J]. Sensors, 2020, 20(19): 5535. 
[16] MAO J, WANG Q, LIANG Y B, et al. A new simplified zenith tropospheric delay model for real-time GNSS applications [J]. GPS Solutions, 2021, 25(2): 43. 
[17] LI S, XU T H, JIANG N, et al. Regional zenith tropospheric delay modeling based on least squares support vector machine using GNSS and ERA5 data [J]. Remote Sensing, 2021, 13(5): 1004. 
[18] HAO Y S, XU A G, SUI X, et al. A modified extended Kalman filter for a two-antenna GPS/INS vehicular navigation system [J]. Sensors, 2018, 18(11): 3809.
  |