Journal of Shanghai Jiao Tong University ›› 2024, Vol. 58 ›› Issue (3): 352-360.doi: 10.16183/j.cnki.jsjtu.2022.440
• Mechanical Engineering • Previous Articles Next Articles
SUN Zhiwei1, HU Xiong1(), DONG Kai1, SUN Dejian1, LIU Yang2
Received:
2022-11-04
Revised:
2023-02-10
Accepted:
2023-03-03
Online:
2024-03-28
Published:
2024-03-28
CLC Number:
SUN Zhiwei, HU Xiong, DONG Kai, SUN Dejian, LIU Yang. RUL Prediction Method for Quay Crane Hoisting Gearbox Bearing Based on LSTM-CAPF Framework[J]. Journal of Shanghai Jiao Tong University, 2024, 58(3): 352-360.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2022.440
[1] | 侯美慧, 胡雄, 王冰, 等. 基于Weibull分布的岸桥铰点退化特征提取方法研究[J]. 振动与冲击, 2019, 38(22): 198-203. |
HOU Meihui, HU Xiong, WANG Bing, et al. Degradation feature extraction for the ship-to-shore crane turning point based on Weibull distribution[J]. Journal of Vibration and Shock, 2019, 38(22):198-203. | |
[2] |
SINGLETON R K, STRANGAS E G, AVIYENTE S. The use of bearing currents and vibrations in lifetime estimation of bearings[J]. IEEE Transactions on Industrial Informatics, 2016, 13(3): 1301-1309.
doi: 10.1109/TII.2016.2643693 URL |
[3] | 唐刚, 李建霞, 胡雄. 准确近似聚类算法及其在岸桥拉杆状态监测中的应用[J]. 东华大学学报(自然科学版), 2018, 44(4): 590-594. |
TANG Gang, LI Jianxia, HU Xiong. Accurate approximate clustering algorithm and its application in the state monitoring of crane[J]. Journal of Donghua University (Natural Science), 2018, 44(4): 590-594. | |
[4] |
CHEN D, QIN Y, WANG Y, et al. Health indicator construction by quadratic function-based deep convolutional auto-encoder and its application into bearing RUL prediction[J]. ISA Transactions, 2021, 114: 44-56.
doi: 10.1016/j.isatra.2020.12.052 pmid: 33402262 |
[5] |
BAE J, XI Z. Learning of physical health timestep using the LSTM network for remaining useful life estimation[J]. Reliability Engineering & System Safety, 2022, 226: 108717.
doi: 10.1016/j.ress.2022.108717 URL |
[6] |
LEI Y, LI N, GONTARZ S, et al. A model-based method for remaining useful life prediction of machinery[J]. IEEE Transactions on Reliability, 2016, 65(3): 1314-1326.
doi: 10.1109/TR.2016.2570568 URL |
[7] |
QIAN Y, YAN R, GAO R X. A multi-time scale approach to remaining useful life prediction in rolling bearing[J]. Mechanical Systems and Signal Processing, 2017, 83: 549-567.
doi: 10.1016/j.ymssp.2016.06.031 URL |
[8] |
AYE S A, HEYNS P S. An integrated Gaussian process regression for prediction of remaining useful life of slow speed bearings based on acoustic emission[J]. Mechanical Systems and Signal Processing, 2017, 84: 485-498.
doi: 10.1016/j.ymssp.2016.07.039 URL |
[9] |
WANG Q, XU K, KONG X, et al. A linear mapping method for predicting accurately the RUL of rolling bearing[J]. Measurement, 2021, 176: 109127.
doi: 10.1016/j.measurement.2021.109127 URL |
[10] | ALI J B, CHEBEL-MORELLO B, SAIDI L, et al. Accurate bearing remaining useful life prediction based on Weibull distribution and artificial neural network[J]. Mechanical Systems and Signal Processing, 2015, 56: 150-172. |
[11] |
BIAN L, GEBRAEEL N, KHAROUFEH J P. Degradation modeling for real-time estimation of residual lifetimes in dynamic environments[J]. Iie Transactions, 2015, 47(5): 471-486.
doi: 10.1080/0740817X.2014.955153 URL |
[12] |
LIAO H, TIAN Z. A framework for predicting the remaining useful life of a single unit under time-varying operating conditions[J]. Iie Transactions, 2013, 45(9): 964-980.
doi: 10.1080/0740817X.2012.705451 URL |
[13] |
PENG W, LI Y F, YANG Y J, et al. Bayesian degradation analysis with inverse Gaussian process models under time-varying degradation rates[J]. IEEE Transactions on Reliability, 2017, 66(1): 84-96.
doi: 10.1109/TR.2016.2635149 URL |
[14] |
KUNDU P, DARPE A K, KULKARNI M S. Weibull accelerated failure time regression model for remaining useful life prediction of bearing working under multiple operating conditions[J]. Mechanical Systems and Signal Processing, 2019, 134: 106302.
doi: 10.1016/j.ymssp.2019.106302 URL |
[15] |
LI N, GEBRAEEL N, LEI Y, et al. Remaining useful life prediction of machinery under time-varying operating conditions based on a two-factor state-space model[J]. Reliability Engineering & System Safety, 2019, 186: 88-100.
doi: 10.1016/j.ress.2019.02.017 URL |
[16] | SUN Z, HU X, DONG K. Remaining useful life prediction of quay crane hoist gearbox bearing under dynamic operating conditions based on ARIMA-CAPF framework[J]. Shock and Vibration, 2021, 2021: 9403401. |
[17] |
WANG Y, WANG Z, HE S, et al. A practical chiller fault diagnosis method based on discrete Bayesian network[J]. International Journal of Refrigeration, 2019, 102: 159-167.
doi: 10.1016/j.ijrefrig.2019.03.008 URL |
[18] |
HUANG Q, LI J, ZHU M. An improved convolutional neural network with load range discretization for probabilistic load forecasting[J]. Energy, 2020, 203: 117902.
doi: 10.1016/j.energy.2020.117902 URL |
[19] | 王玉静, 李少鹏, 康守强, 等. 结合CNN和LSTM的滚动轴承剩余使用寿命预测方法[J]. 振动、测试与诊断, 2021, 41(3): 439-446. |
WANG Yujing, LI Shaopeng, KANG Shouqiang, et al. Method of predicting remaining useful life of rolling bearing combining CNN and LSTM[J]. Journal of Vibration, Measurement & Diagnosis, 2021, 41(3): 439-446. | |
[20] |
LI Y, HUANG X, DING P, et al. Wiener-based remaining useful life prediction of rolling bearings using improved Kalman filtering and adaptive modification[J]. Measurement, 2021, 182: 109706.
doi: 10.1016/j.measurement.2021.109706 URL |
[21] |
侯美慧, 胡雄, 王冰, 等. 基于Weibull和GG模糊聚类的岸桥减速箱健康状态识别方法[J]. 机械强度, 2019, 41(5): 1023-1028.
doi: 10.16579/j.issn.1001.9669.2019.05.002 |
HOU Meihui, HU Xiong, WANG Bing, et al. Health condition recognition for quayside container crane reducer based on Weibull and GG fuzzy clustering[J]. Journal of Mechanical Strength, 2019, 41(5): 1023-1028. | |
[22] |
LI N, LEI Y, LIN J, et al. An improved exponential model for predicting remaining useful life of rolling element bearings[J]. IEEE Transactions on Industrial Electronics, 2015, 62(12): 7762-7773.
doi: 10.1109/TIE.2015.2455055 URL |
[23] | WANG Y, YANG C, XU D, et al. Evaluation and prediction method of rolling bearing performance degradation based on attention-LSTM[J]. Shock and Vibration, 2021, 2021: 6615920. |
[1] | WANG Hanyu, CHEN Zhen, ZHOU Di, CHEN Zhaoxiang, PAN Ershun. Nonlinear Degradation Modeling and Residual Life Prediction for Rollers Based on Kernel-based Wiener Process [J]. Journal of Shanghai Jiao Tong University, 2023, 57(8): 1037-1045. |
[2] | ZHONG Zhiwei, WANG Yuxiang, HUANG Yixiang, XIAO Dengyu, XIA Pengcheng, LIU Chengliang. Remaining Useful Life Prediction of IGBT Modules Across Working Conditions Based on ProbSparse Self-Attention [J]. Journal of Shanghai Jiao Tong University, 2023, 57(8): 1005-1015. |
[3] | XIAO Lei (肖雷), XIA Tangbin (夏唐斌). Opportunistic Replacement Optimization for Multi-Component System Based on Programming Theory [J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(Sup. 1): 77-84. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||