Journal of Shanghai Jiao Tong University ›› 2023, Vol. 57 ›› Issue (8): 1005-1015.doi: 10.16183/j.cnki.jsjtu.2021.538
Special Issue: 《上海交通大学学报》2023年“机械与动力工程”专题
• Mechanical Engineering • Previous Articles Next Articles
ZHONG Zhiwei, WANG Yuxiang, HUANG Yixiang(), XIAO Dengyu, XIA Pengcheng, LIU Chengliang
Received:
2020-12-30
Revised:
2022-03-10
Accepted:
2022-04-25
Online:
2023-08-28
Published:
2023-08-31
CLC Number:
ZHONG Zhiwei, WANG Yuxiang, HUANG Yixiang, XIAO Dengyu, XIA Pengcheng, LIU Chengliang. Remaining Useful Life Prediction of IGBT Modules Across Working Conditions Based on ProbSparse Self-Attention[J]. Journal of Shanghai Jiao Tong University, 2023, 57(8): 1005-1015.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2021.538
Tab.3
Parameters of model structure
网络模块 | 具体实现 | 参数 | 输出尺寸 |
---|---|---|---|
输入层 | - | - | 50×12 |
嵌入层 | 一维卷积 | 卷积核为12×3×256 | 50×256 |
概率稀疏自注意力 | 线性变换 | 权重为50×256×32 | 50×32 |
模块 | 注意力计算 | - | 50×32 |
(n=8, dk=32) | 合并 | - | 50×256 |
后处理模块 | 层正则化 | - | 50×256 |
一维卷积 | 卷积核为256×1×128 | 50×128 | |
一维卷积 | 卷积核为128×1×256 | 50×256 | |
层正则化 | - | 50×256 | |
一维卷积 | 卷积核为256×5×64 | 46×64 | |
全局池化层 | - | 1×64 | |
全连接模块 | 全连接层 | 权重为64×32 | 32 |
全连接层 | 权重为32×1 | 1 |
Tab.4
Prediction results of different models
方法 | IGBT1→IGBT2 | IGBT1→IGBT3 | IGBT2→IGBT1 | IGBT2→IGBT3 | IGBT3→IGBT1 | IGBT3→IGBT2 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | ||||||
本文模型 | 0.001 6 | 0.031 9 | 0.001 0 | 0.024 3 | 0.002 6 | 0.041 9 | 0.001 6 | 0.033 0 | 0.005 8 | 0.058 5 | 0.001 6 | 0.032 5 | |||||
gMLP | 0.006 1 | 0.071 3 | 0.088 7 | 0.225 8 | 0.006 4 | 0.067 5 | 0.095 6 | 0.253 8 | 0.008 1 | 0.065 0 | 0.026 8 | 0.128 6 | |||||
LSTM | 0.009 3 | 0.074 3 | 0.027 3 | 0.129 4 | 0.009 2 | 0.081 7 | 0.033 1 | 0.155 7 | 0.013 5 | 0.084 5 | 0.027 6 | 0.129 4 | |||||
TCA+gMLP | 0.004 2 | 0.056 6 | 0.012 7 | 0.088 9 | 0.005 5 | 0.059 1 | 0.007 5 | 0.074 0 | 0.010 0 | 0.079 1 | 0.015 5 | 0.103 2 | |||||
CORAL+LSTM | 0.007 2 | 0.058 1 | 0.025 2 | 0.123 3 | 0.004 6 | 0.055 6 | 0.042 2 | 0.165 3 | 0.032 5 | 0.137 8 | 0.043 1 | 0.159 8 |
[1] |
CARAMEL C, AUSTIN P, SANCHEZ J L, et al. Integrated IGBT short-circuit protection structure: Design and optimization[J]. Microelectronics Journal, 2006, 37(3): 249-256.
doi: 10.1016/j.mejo.2005.09.028 URL |
[2] | 刘嘉诚. 基于机器学习算法的IGBT寿命预测研究[D]. 合肥: 合肥工业大学, 2020. |
LIU Jiacheng. IGBT life prediction based on machine learning algorithm[D]. Hefei: Hefei University of Technology, 2020. | |
[3] |
YANG S Y, BRYANT A, MAWBY P, et al. An industry-based survey of reliability in power electronic converters[J]. IEEE Transactions on Industry Applications, 2011, 47(3): 1441-1451.
doi: 10.1109/TIA.2011.2124436 URL |
[4] | GOPIREDDY L R, TOLBERT L M, OZPINECI B. Power cycle testing of power switches: A literature survey[J]. IEEE Transactions on Power Electronics, 2015, 30(5): 2465-2473. |
[5] | 唐圣学, 张继欣, 姚芳, 等. IGBT模块寿命预测方法研究综述[J]. 电源学报, 2021: 1-29. |
TANG Shengxue, ZHANG Jixin, YAO Fang, et al. An overview of lifetime prediction methods for IGBT power module[J]. Journal of Power Supply, 2021: 1-29. | |
[6] | HUANG Q, PENG C, WANG L C, et al. Effects of current and bonding wires damage on high-power IGBT module reliability by electro-thermo-mechanical simulation[C]//2020 21st International Conference on Electronic Packaging Technology. Guangzhou, China: IEEE, 2020: 1-4. |
[7] | 张亚玲, 李志刚. 基于加速老化试验的IGBT寿命预测模型研究[J]. 电气传动, 2016, 46(10): 72-75. |
ZHANG Yaling, LI Zhigang. Research on IGBT lifetime prediction models based on accelerated lifetime test[J]. Electric Drive, 2016, 46(10): 72-75. | |
[8] | 田航, 陈民武, 张振宇, 等. 牵引负荷对补偿装置功率模块寿命预测的影响及分析[J]. 电气化铁道, 2019, 30(1): 24-28. |
TIAN Hang, CHEN Minwu, ZHANG Zhenyu, et al. Influence to prediction of service life of power modules of compensation device caused by traction load and its analysis[J]. Electric Railway, 2019, 30(1): 24-28. | |
[9] | 刘子英, 朱琛磊. 基于Elman神经网络模型的IGBT寿命预测[J]. 半导体技术, 2019, 44(5): 395-400. |
LIU Ziying, ZHU Chenlei. IGBT life prediction based on Elman neural network model[J]. Semiconductor Technology, 2019, 44(5): 395-400. | |
[10] | 葛建文, 黄亦翔, 陶智宇, 等. 基于Transformer模型的IGBT剩余寿命预测[J]. 半导体技术, 2021, 46(4): 316-323. |
GE Jianwen, HUANG Yixiang, TAO Zhiyu, et al. Residual useful life prediction of IGBTs based on transformer model[J]. Semiconductor Technology, 2021, 46(4): 316-323. | |
[11] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[EB/OL]. (2017-12-06)[2021-12-30]. https//arxiv.org/abs/1706.03762. |
[12] |
CAO Y D, DING Y F, JIA M P, et al. A novel temporal convolutional network with residual self-attention mechanism for remaining useful life prediction of rolling bearings[J]. Reliability Engineering & System Safety, 2021, 215: 107813.
doi: 10.1016/j.ress.2021.107813 URL |
[13] |
MO Y, WU Q H, LI X, et al. Remaining useful life estimation via transformer encoder enhanced by a gated convolutional unit[J]. Journal of Intelligent Manufacturing, 2021, 32(7): 1997-2006.
doi: 10.1007/s10845-021-01750-x |
[14] | ZHOU H Y, ZHANG S H, PENG J Q, et al. Informer: Beyond efficient transformer for long sequence time-series forecasting[EB/OL]. (2021-03-28)[2021-12-30]. https//arxiv.org/abs/2012.07436. |
[15] | GEHRING J, AULI M, GRANGIER D, et al. Convolutional sequence to sequence learning[C]//34th International Conference on Machine Learning. Sydney, Australia: PMLR, 2017: 1243-1252. |
[16] |
LONG M S, CAO Y, CAO Z J, et al. Transferable representation learning with deep adaptation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(12): 3071-3085.
doi: 10.1109/TPAMI.2018.2868685 pmid: 30188813 |
[17] | 曾东, 孙林, 周雒维, 等. 基于加速老化试验IGBT性能退化特征参量的可靠性评估[J]. 电工电能新技术, 2019, 38(7): 20-28. |
ZENG Dong, SUN Lin, ZHOU Luowei, et al. Reliability evaluation of IGBT performance degradation characteristic parameters based on accelerated aging test[J]. Advanced Technology of Electrical Engineering and Energy, 2019, 38(7): 20-28. | |
[18] | 刘宾礼, 刘德志, 唐勇, 等. 基于加速寿命试验的IGBT模块寿命预测和失效分析[J]. 江苏大学学报(自然科学版), 2013, 34(5): 556-563. |
LIU Binli, LIU Dezhi, TANG Yong, et al. Lifetime prediction and failure analysis of IGBT module based on accelerated lifetime test[J]. Journal of Jiangsu University (Natural Science Edition), 2013, 34(5): 556-563. | |
[19] | 张全. 电子元器件加速寿命试验技术浅析[J]. 空间电子技术, 2016, 13(6): 86-88. |
ZHANG Quan. Analysis on the accelerated life test technique of electronic components[J]. Space Electronic Technology, 2016, 13(6): 86-88. | |
[20] | 姬煜轲, 侯婷, 何智鹏, 等. 一种柔直换流阀用压接型IGBT功率子模块加速老化试验方法[J]. 南方电网技术, 2021, 15(5): 1-11. |
JI Yuke, HOU Ting, HE Zhipeng, et al. An accelerated aging test method of press-pack IGBTs based power submodules for VSC-HVDC converter valve[J]. Southern Power System Technology, 2021, 15(5): 1-11. | |
[21] |
SMET V, FOREST F, HUSELSTEIN J J, et al. Ageing and failure modes of IGBT modules in high-temperature power cycling[J]. IEEE Transactions on Industrial Electronics, 2011, 58(10): 4931-4941.
doi: 10.1109/TIE.2011.2114313 URL |
[22] | 陈一高, 陈民铀, 高兵, 等. 基于瞬态热阻的IGBT焊料层失效分析[J]. 中国电机工程学报, 2018, 38(10): 3059-3067. |
CHEN Yigao, CHEN Minyou, GAO Bing, et al. Evaluation of solder failure of an IGBT module based on transient thermal impedance[J]. Proceedings of the CSEE, 2018, 38(10): 3059-3067. | |
[23] |
MOROZUMI A, YAMADA K, MIYASAKA T, et al. Reliability of power cycling for IGBT power semiconductor modules[J]. IEEE Transactions on Industry Applications, 2003, 39(3): 665-671.
doi: 10.1109/TIA.2003.810661 URL |
[24] | 卓鹏程, 严瑾, 郑美妹, 等. 面向滚动轴承全生命周期故障诊断的GA-OIHF Elman神经网络算法[J]. 上海交通大学学报, 2021, 55(10): 1255-1262. |
ZHUO Pengcheng, YAN Jin, ZHENG Meimei, et al. GA-OIHF Elman neural network algorithm for fault diagnosis of full life cycle of rolling bearing[J]. Journal of Shanghai Jiao Tong University, 2021, 55(10): 1255-1262. | |
[25] |
WANG Y, PENG Y Z, ZI Y Y, et al. A two-stage data-driven-based prognostic approach for bearing degradation problem[J]. IEEE Transactions on Industrial Informatics, 2016, 12(3): 924-932.
doi: 10.1109/TII.2016.2535368 URL |
[26] | LIU H, DAI Z, SO D R, et al. Pay attention to mlps[J]. Advances in Neural Information Processing Systems, 2021, 34: 9204-9215. |
[27] |
PAN S J, TSANG I W, KWOK J T, et al. Domain adaptation via transfer component analysis[J]. IEEE Transactions on Neural Networks, 2011, 22(2): 199-210.
doi: 10.1109/TNN.2010.2091281 pmid: 21095864 |
[28] | SUN B C, SAENKO K. Deep coral: Correlation alignment for deep domain adaptation[C/OL].(2016-11-24)[2021-12-30]. https//link.springer.com/chapter/10.1007/978-3-319-49409-8_35. |
[1] | LI Mingai1,2,3∗ (李明爱), XU Dongqin1 (许东芹). Transfer Learning in Motor Imagery Brain Computer Interface: A Review [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(1): 37-59. |
[2] | WANG Hanyu, CHEN Zhen, ZHOU Di, CHEN Zhaoxiang, PAN Ershun. Nonlinear Degradation Modeling and Residual Life Prediction for Rollers Based on Kernel-based Wiener Process [J]. Journal of Shanghai Jiao Tong University, 2023, 57(8): 1037-1045. |
[3] | GUO Junfeng, WANG Miaosheng, WANG Zhiming. Fault Diagnosis of Rolling Bearing with Roller Spalling Based on Two-Step Transfer Learning on Unbalanced Dataset [J]. Journal of Shanghai Jiao Tong University, 2023, 57(11): 1512-1521. |
[4] | LIU Min (刘 敏), YI Ming (易 鸣), WU Minghu∗ (武明虎), WANG Juan (王 娟), HE Yu (何 宇). Breast Pathological Image Classification Based on VGG16 Feature Concatenation [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(4): 473-484. |
[5] | TANG Zeyu, ZOU Xiaohu, LI Pengfei, ZHANG Wei, YU Jiaqi, ZHAO Yaodong. A Few-Shots OFDM Target Augmented Identification Method Based on Transfer Learning [J]. Journal of Shanghai Jiao Tong University, 2022, 56(12): 1666-1674. |
[6] | YU Qing (余青), MA Yi (马祎), LI Yongfu∗ (李永福). Enhancing Speech Recognition for Parkinson’s Disease Patient Using Transfer Learning Technique [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 90-98. |
[7] | BU Ran (卜冉), XIANG Wei∗ (向伟), CAO Shitong (曹世同). COVID-19 Interpretable Diagnosis Algorithm Based on a Small Number of Chest X-Ray Samples [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 81-89. |
[8] | SHEN Hui, LIU Shimin, XU Minjun, HUANG Delin, BAO Jingsong, ZHENG Xiaohu. Adaptive Transferring Method of Digital Twin Model for Machining Domain [J]. Journal of Shanghai Jiao Tong University, 2022, 56(1): 70-80. |
[9] | HE Xinlin, QI Zongfeng, LI Jianxun. Unbalanced Learning of Generative Adversarial Network Based on Latent Posterior [J]. Journal of Shanghai Jiao Tong University, 2021, 55(5): 557-565. |
[10] | WANG Yuexing, WU Yongguo, XU Chuangang. Infrared Ship Target Detection Algorithm Based on Deep Transfer Learning [J]. Air & Space Defense, 2021, 4(4): 61-66. |
[11] | JIANG Yudi, HU Hui, YIN Yuehong. Unsupervised Transfer Learning for Remaining Useful Life Prediction of Elevator Brake [J]. Journal of Shanghai Jiao Tong University, 2021, 55(11): 1408-1416. |
[12] | ZHONG Haowen (钟昊文), WANG Chao (王超), TUO Hongya (庹红娅), HU Jian (胡健), QIAO Lingfeng (乔凌峰), JING Zhongliang (敬忠良). Transfer Learning Based on Joint Feature Matching and Adversarial Networks [J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(6): 699-705. |
[13] | XIAO Lei (肖雷), XIA Tangbin (夏唐斌). Opportunistic Replacement Optimization for Multi-Component System Based on Programming Theory [J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(Sup. 1): 77-84. |
[14] | CHEN Weia,b,QUE Xiufua,FENQ Weia,b,ZHANG Jianhuaa,YANG Lianqiaoa. Analysis of Transient Thermal Resistance of LED Based on Bayesian Probability and Statistics [J]. Journal of Shanghai Jiaotong University, 2016, 50(04): 636-640. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||