[1] |
TRAN J, ANASTACIO H, BARDY C. Genetic predispositionsof Parkinson’s disease revealed in patientderivedbrain cells [J]. Npj Parkinson’s Disease, 2020,6: 8.
|
[2] |
DASHTIPOUR K, TAFRESHI A, LEE J, et al. Speechdisorders in Parkinson’s disease: Pathophysiology,medical management and surgical approaches [J]. NeurodegenerativeDisease Management, 2018, 8(5): 337-348.
|
[3] |
HO A K, IANSEK R, MARIGLIANI C, et al. Speechimpairment in a large sample of patients with Parkinson’sdisease [J]. Behavioural Neurology, 1998, 11(3):131-137.
|
[4] |
ESPA?NA-BONET C, FONOLLOSA J A R. Automaticspeech recognition with deep neural networksfor impaired speech [M]//Advances in speech andlanguage technologies for Iberian languages. Cham:Springer, 2016: 97-107.
|
[5] |
Y?LMAZ E, GANZEBOOM M, CUCCHIARINI C, etal. Multi-stage DNN training for automatic recognitionof dysarthric speech [C]//Interspeech 2017. Stockholm:ISCA, 2017: 2685-2689.
|
[6] |
KONS Z, SHECHTMAN S, SORIN A, et al. NeuralTTS voice conversion [C]//2018 IEEE Spoken LanguageTechnology Workshop (SLT). Athens: IEEE,2018: 290-296.
|
[7] |
MORO-VELAZQUEZ L, CHO J, WATANABE S, etal. Study of the performance of automatic speechrecognition systems in speakers with Parkinson’s disease[C]//Interspeech 2019. Graz: ISCA, 2019: 3875-3879.
|
[8] |
PANAYOTOV V, CHEN G G, POVEY D, et al. Librispeech:An ASR corpus based on public domain audiobooks [C]//2015 IEEE International Conferenceon Acoustics, Speech and Signal Processing (ICASSP).South Brisbane: IEEE, 2015: 5206-5210.
|
[9] |
RUSZ J, CMEJLA R, RUZICKOVA H, et al. Quantitativeacoustic measurements for characterization ofspeech and voice disorders in early untreated Parkinson’sdisease [J]. The Journal of the Acoustical Societyof America, 2011, 129(1): 350-367.
|
[10] |
BAYESTEHTASHK A, ASGARI M, SHAFRAN I,et al. Fully automated assessment of the severity ofParkinson’s disease from speech [J]. Computer Speech& Language, 2015, 29(1): 172-185.
|
[11] |
OROZCO-ARROYAVE J R, ARIAS-LONDO?NO J D,VARGAS-BONILLA J F, et al. New Spanish speechcorpus database for the analysis of people sufferingfrom Parkinson’s disease [C]//International Conferenceon Language Resources & Evaluation. Reykjavik:ELRA, 2014: 342-347.
|
[12] |
MORO-VELAZQUEZ L, GOMEZ-GARCIA J A,GODINO-LLORENTE J I, et al. A forced Gaussiansbased methodology for the differential evaluation ofParkinson’s Disease by means of speech processing [J].Biomedical Signal Processing and Control, 2019, 48:205-220.
|
[13] |
Adobe. Adobe Audition CC Help [M]. San Jose: AdobeInc., 2018.
|
[14] |
RIX A W, BEERENDS J G, HOLLIER M P, et al.Perceptual evaluation of speech quality (PESQ)-a newmethod for speech quality assessment of telephone networksand codecs [C]//2001 IEEE International Conferenceon Acoustics, Speech, and Signal Processing.Salt Lake City, UT: IEEE, 2001: 749-752.
|
[15] |
TAAL C H, HENDRIKS R C, HEUSDENS R,et al. An algorithm for intelligibility predictionof time-frequency weighted noisy speech [J]. IEEE Transactions on Audio, Speech, and Language Processing,2011, 19(7): 2125-2136.
|
[16] |
READ J, MAZZONE E, HORTON M. Recognitionerrors and recognizing errors - children writingon the tablet PC [C]//Human-Computer Interaction-INTERACT 2005. Rome: IFIP TC13, 2005: 1096-1099.
|
[17] |
PARK D S, CHAN W, ZHANG Y, et al. SpecAugment:A simple data augmentation method for automaticspeech recognition [C]//Interspeech 2019. Graz:ISCA, 2019: 2613-2617.
|
[18] |
FLANAGAN J L. Speech synthesis [M]//Speech analysissynthesis and perception. Berlin, Heidelberg:Springer, 1965: 166-209.
|
[19] |
AMODEI D, ANANTHANARAYANAN S, ANUBHAIR, et al. Deep speech 2: End-to-end speech recognitionin english and mandarin [C]// 33rd InternationalConference on Machine Learning. New York:JMLR, 2016: 173-182.
|
[20] |
ZHENG F, ZHANG G L, SONG Z J. Comparisonof different implementations of MFCC [J]. Journal ofComputer Science and Technology, 2001, 16(6): 582-589.
|
[21] |
ZHAO X J, WANG D L. Analyzing noise robustnessof MFCC and GFCC features in speaker identification[C]//2013 IEEE International Conference on Acoustics,Speech and Signal Processing. Vancouver, BC:IEEE, 2013: 7204-7208.
|
[22] |
JIANG H. Feature extraction and dimensionality reductionin pattern recognition with applications inspeech recognition [D]. Singapore: Nanyang TechnologicalUniversity, 2006.
|
[23] |
ZHANG C, WOODLAND P C. DNN speaker adaptationusing parameterised sigmoid and ReLU hiddenactivation functions [C]//2016 IEEE InternationalConference on Acoustics, Speech and Signal Processing(ICASSP). Shanghai: IEEE, 2016: 5300-5304.
|
[24] |
GERS F A, SCHMIDHUBER J, CUMMINS F. Learningto forget: Continual prediction with LSTM [J].Neural Computation, 2000, 12(10): 2451-2471.
|
[25] |
GRAVES A, FERN′ANDEZ S, GOMEZ F, et al. Connectionisttemporal classification: Labelling unsegmentedsequence data with recurrent neural networks[C]//Proceedings of the 23rd international conferenceon Machine learning. Pittsburgh, PA: ACM Press,2006: 369-376.
|
[26] |
HEAFIELD K, POUZYREVSKY I, CLARK J H, etal. Scalable modified Kneser-Ney language model estimation[C]//51st Annual Meeting of the Associationfor Computational Linguistics. Sofia: Association forComputational Linguistics, 2013: 690-696.
|
[27] |
NASEER A, RANI M, NAZ S, et al. Refining Parkinson’sneurological disorder identification through deeptransfer learning [J]. Neural Computing and Applications,2020, 32(3): 839-854.
|
[28] |
YOON H, LI J. A novel positive transfer learning approachfor telemonitoring of Parkinson’s disease [J].IEEE Transactions on Automation Science and Engineering,2019, 16(1): 180-191.
|
[29] |
TORVI V G, BHATTACHARYA A,CHAKRABORTY S. Deep domain adaptationto predict freezing of gait in patients with Parkinson’sdisease [C]//2018 17th IEEE International Conferenceon Machine Learning and Applications (ICMLA).Orlando, FL: IEEE, 2018: 1001-1006.
|
[30] |
PAN S J, YANG Q. A survey on transfer learning [J].IEEE Transactions on Knowledge and Data Engineering,2010, 22(10): 1345-1359.[31] CHEN Z X, LIN Y. Improving X-vector and PLDA fortext-dependent speaker verification [C]//Interspeech2020. Shanghai: ISCA, 2020: 726-730.
|