J Shanghai Jiaotong Univ Sci ›› 2022, Vol. 27 ›› Issue (1): 99-111.doi: 10.1007/s12204-021-2273-9
• Robotics & AI in Interdisciplinary Medicine and Engineering • Previous Articles Next Articles
ZHANG Yue1,2 (张月), LIU Shijie1,2,3 (刘世界), LI Chunlai1 (李春来), WANG Jianyu1,2,3∗ (王建宇)
Received:
2020-10-28
Online:
2022-01-28
Published:
2022-01-14
CLC Number:
ZHANG Yue (张月), LIU Shijie (刘世界), LI Chunlai (李春来), WANG Jianyu (王建宇). Application of Deep Learning Method on Ischemic Stroke Lesion Segmentation[J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 99-111.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/sjtu_en/EN/10.1007/s12204-021-2273-9
[1] | WANG Y, LIU H, LIU Y, et al. Deep learning frameworkfor hemorrhagic stroke segmentation and detection[C]//International Conference on Biological Informationand Biomedical Engineering. Shanghai: VDE,2018: 78-83. |
[2] | DOYLE K P, SIMON R P, STENZEL-POORE M P.Mechanisms of ischemic brain damage [J]. Neuropharmacology,2008, 55(3): 310-318. |
[3] | NALL R. What are the different types of strokes?[EB/OL]. (2018-09-20) [2020-08-01]. https://www.healthline.com/health/stroke-types. |
[4] | MAIER O, MENZE B H, VON DER GABLENTZ J,et al. ISLES 2015- A public evaluation benchmark for ischemic stroke lesion segmentation from multispectralMRI [J]. Medical Image Analysis, 2017, 35: 250-269. |
[5] | REKIK I, ALLASSONNI`ERE S, CARPENTER T K,et al. Medical image analysis methods in MR/CTimagedacute-subacute ischemic stroke lesion: Segmentation,prediction and insights into dynamic evolutionsimulation models. A critical appraisal [J].NeuroImage: Clinical, 2012, 1(1): 164-178. |
[6] | LIEW S L, ANGLIN J M, BANKS N W, et al. A large,open source dataset of stroke anatomical brain imagesand manual lesion segmentations [J]. Scientific Data,2018, 5: 180011. |
[7] | ZAHARCHUK G, EL MOGY I S, FISCHBEIN N J,et al. Comparison of arterial spin labeling and bolusperfusion-weighted imaging for detecting mismatch inacute stroke [J]. Stroke, 2012, 43(7): 1843-1848. |
[8] | WANG G, SONG T, DONG Q, et al. Automatic ischemicstroke lesion segmentation from computed tomographyperfusion images by image synthesis andattention-based deep neural networks [J]. Medical ImageAnalysis, 2020, 65: 101787. |
[9] | MEZZAPESA D M, PETRUZZELLIS M, LUCIVEROV, et al. Multimodal MR examination in acute ischemicstroke [J]. Neuroradiology, 2006, 48(4): 238-246. |
[10] | GAO C. Research on ischemic stroke lesion segmentationbased on deep learning [D]. Nanchang: NanchangUniversity, 2019 (in Chinese). |
[11] | GILLEBERT C R, HUMPHREYS G W, MANTINID. Automated delineation of stroke lesions using brainCT images [J]. NeuroImage: Clinical, 2014, 4: 540-548. |
[12] | DONAHUE J, WINTERMARK M. Perfusion CT andacute stroke imaging: Foundations, applications, andliterature review [J]. Journal of Neuroradiology, 2015,42(1): 21-29. |
[13] | KAMNITSAS K, LEDIG C, NEWCOMBE V F J, etal. Efficient multi-scale 3D CNN with fully connectedCRF for accurate brain lesion segmentation [J]. MedicalImage Analysis, 2017, 36: 61-78. |
[14] | LIU L, CHEN S, ZHANG F, et al. Deep convolutionalneural network for automatically segmenting acute ischemicstroke lesion in multi-modality MRI [J]. NeuralComputing and Applications, 2020, 32: 6545-6558 |
[15] | POLMAN C H, REINGOLD S C, EDAN G, et al.Diagnostic criteria for multiple sclerosis: 2005 revisionsto the “McDonald Criteria” [J]. Annals of Neurology,2005, 58(6): 840-846. |
[16] | TOMITA N, JIANG S, MAEDER M E, et al. Automaticpost-stroke lesion segmentation on MR imagesusing 3D residual convolutional neural network[J]. NeuroImage: Clinical, 2020, 27: 102276. |
[17] | ZHANG L, SONG R, WANG Y, et al. Ischemic strokelesion segmentation using multi-plane information fusion[J]. IEEE Access, 2020, 8: 45715-45725. |
[18] | ZHANG L, TANNO R, XU M C, et al. Disentanglinghuman error from the ground truth in segmentationof medical images [DB/OL]. (2020-07-31) [2020-08-01].https://arxiv.org/abs/2007.15963. |
[19] | LITJENS G, KOOI T, BEJNORDI B E, et al. A surveyon deep learning in medical image analysis [J].Medical Image Analysis, 2017, 42: 60-88. |
[20] | LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. |
[21] | KRIZHEVSKY A, SUTSKEVER I, HINTON G E.ImageNet classification with deep convolutional neuralnetworks [J]. Communications of the ACM, 2017,60(6): 84-90. |
[22] | RONNEBERGER O, FISCHER P, BROX T. U-net:Convolutional networks for biomedical image segmentation[M]//Medical image computing and computerassistedintervention-MICCAI 2015. Cham: Springer,2015: 234-241. |
[23] | GHAFFARI M, SOWMYA A, OLIVER R. Automatedbrain tumor segmentation using multimodalbrain scans: A survey based on models submitted tothe BraTS 2012–2018 challenges [J]. IEEE Reviews inBiomedical Engineering, 2020, 13: 156-168. |
[24] | WADHWA A, BHARDWAJ A, SINGH VERMA V.A review on brain tumor segmentation of MRI images[J]. Magnetic Resonance Imaging, 2019, 61: 247-259. |
[25] | SARITHA S, AMUTHA PRABHA N. A comprehensivereview: Segmentation of MRI images—brain tumor[J]. International Journal of Imaging Systems andTechnology, 2016, 26(4): 295-304. |
[26] | ZHAO X, WU Y, SONG G, et al. A deep learningmodel integrating FCNNs and CRFs for brain tumorsegmentation [J]. Medical Image Analysis, 2018, 43:98-111. |
[27] | BEN NACEUR M, AKIL M, SAOULI R, et al.Fully automatic brain tumor segmentation with deeplearning-based selective attention using overlappingpatches and multi-class weighted cross-entropy [J].Medical Image Analysis, 2020, 63: 101692. |
[28] | JEONG J, LEI Y, SHU H K, et al. Brain tumor segmentationusing 3D mask R-CNN for dynamic susceptibilitycontrast enhanced perfusion imaging [J]. Proceedingsof SPIE, 2020: 11317: 1131720. |
[29] | ZHOU C, DING C, WANG X, et al. One-pass multitasknetworks with cross-task guided attention forbrain tumor segmentation [J]. IEEE Transactions onImage Processing, 2020, 29: 4516-4529. |
[30] | LONG J, SHELHAMER E, DARRELL T. Fullyconvolutional networks for semantic segmentation[C]//2015 IEEE Conference on Computer Vision andPattern Recognition (CVPR). Piscataway, NJ, USA:IEEE, 2015: 3431-3440. |
[31] | MILLETARI F, NAVAB N, AHMADI S A. V-net:Fully convolutional neural networks for volumetricmedical image segmentation [C]//2016 Fourth InternationalConference on 3D Vision (3DV). Piscataway,NJ: IEEE, 2016: 565-571. |
[32] | WINZECK S, HAKIM A, MCKINLEY R, et al. Isles2016 and 2017-benchmarking ischemic stroke lesionoutcome prediction based on multispectral MRI [J].Frontiers in Neurology, 2018, 9: 679. |
[33] | ISLES: ISLES challenge 2018: Ischemic stroke lesionsegmentation [EB/OL]. (2018-12-05) [2020-08-01].http://www.isles-challenge.org/. |
[34] | PEREIRA S, PINTO A, AMORIM J, et al. Adaptivefeature recombination and recalibration for semanticsegmentation with fully convolutional networks [J].IEEE Transactions on Medical Imaging, 2019, 38(12):2914-2925. |
[35] | ZHANG R, ZHAO L, LOU W, et al. Automatic segmentationof acute ischemic stroke from DWI using3-D fully convolutional DenseNets [J]. IEEE Transactionson Medical Imaging, 2018, 37(9): 2149-2160. |
[36] | KUMAR A, UPADHYAY N, GHOSAL P, et al.CSNet: A new DeepNet framework for ischemic strokelesion segmentation [J]. Computer Methods and Programsin Biomedicine, 2020, 193: 105524. |
[37] | CL` ERIGUES A, VALVERDE S, BERNAL J, et al.Acute and sub-acute stroke lesion segmentation frommultimodal MRI [J]. Computer Methods and Programsin Biomedicine, 2020, 194: 105521. |
[38] | WOO I, LEE A, JUNG S C, et al. Fully automaticsegmentation of acute ischemic lesions on diffusionweightedimaging using convolutional neural networks:Comparison with conventional algorithms [J]. KoreanJournal of Radiology, 2019, 20(8): 1275-1284. |
[39] | WANG P, GAO C, ZHU L, et al. Segmentation algorithmof ischemic stroke lesion based on 3D deepresidual network and cascade U-Net [J]. Computer Applications,2019, 39(11): 3274-3279 (in Chinese). |
[40] | LIU L, WU F, WANG J. Efficient multi-kernel DCNNwith pixel dropout for stroke MRI segmentation [J].Neurocomputing, 2019, 350: 117-127. |
[41] | CHEN L, BENTLEY P, RUECKERT D. Fully automaticacute ischemic lesion segmentation in DWI usingconvolutional neural networks [J]. NeuroImage: Clinical,2017, 15: 633-643. |
[42] | WINZECK S, MOCKING S J, BEZERRA R, et al.Ensemble of convolutional neural networks improvesautomated segmentation of acute ischemic lesions usingmultiparametric diffusion-weighted MRI [J]. AmericanJournal of Neuroradiology, 2019, 40(6): 938-945. |
[43] | HE K, GKIOXARI G, DOLL′AR P, et al. Mask R-CNN[C]//2017 IEEE International Conference on ComputerVision (ICCV ). Piscataway, NJ: IEEE, 2017:2980-2988. |
[44] | MANJ ′ON J V, COUP′E P, RANIGA P, et al. MRIwhite matter lesion segmentation using an ensemble ofneural networks and overcomplete patch-based voting[J]. Computerized Medical Imaging and Graphics, 2018,69: 43-51. |
[45] | RAJAN R, SATHISH R, SHEET D. Significanceof residual learning and boundaryweighted loss in ischaemic stroke lesion segmentation[DB/OL]. (2019-08-13) [2020-08-01].https://arxiv.org/abs/1908.04840. |
[46] | SATHISH R, RAJAN R, VUPPUTURI A, et al. Adversariallytrained convolutional neural networks forsemantic segmentation of ischaemic stroke lesion usingmultisequence magnetic resonance imaging [C]//201941st Annual International Conference of the IEEE Engineeringin Medicine and Biology Society (EMBC).Piscataway, NJ: IEEE, 2019: 1010-1013. |
[47] | LUCAS C, KEMMLING A, MAMLOUK A M, etal. Multi-scale neural network for automatic segmentationof ischemic strokes on acute perfusion images[C]//2018 IEEE 15th International Symposiumon Biomedical Imaging (ISBI 2018). Piscataway, NJ:IEEE, 2018: 1118-1121. |
[48] | ISLAM M, REN H. Class balanced PixelNet for neurologicalimage segmentation [C]//Proceedings of the2018 6th International Conference on Bioinformaticsand Computational Biology. New York, NY: ACM,2018: 83-87. |
[49] | SIMONYAN K, ZISSERMAN A. Very deepconvolutional networks for large-scale imagerecognition [DB/OL]. (2015-04-10) [2020-08-01].https://arxiv.org/abs/1409.1556. |
[50] | P′EREZ MALLA C U, VALD′ES HERN′ANDEZ M DC, RACHMADI M F, et al. Evaluation of enhancedlearning techniques for segmenting ischaemic stroke lesionsin brain magnetic resonance perfusion images usinga convolutional neural network scheme [J]. Frontiersin Neuroinformatics, 2019, 13: 33. |
[51] | HU X, LUO W, HU J, et al. Brain SegNet: 3D localrefinement network for brain lesion segmentation [J].BMC Medical Imaging, 2020, 20(1): 17. |
[52] | CHOI Y, KWON Y, PAIK M C, et al. Ischemicstroke lesion segmentation with convolutional neuralnetworks for small data [EB/OL]. [2020-08-01].http://www.isles-challenge.org/ISLES2017/articles/choi.pdf. |
[53] | CL` ERIGUES A, VALVERDE S, BERNAL J, et al.Acute ischemic stroke lesion core segmentation in CTperfusion images using fully convolutional neural networks[J]. Computers in Biology and Medicine, 2019,115: 103487. |
[54] | B¨O HME L, MADESTA F, SENTKER T, et al.Combining good old random forest and DeepLabv3+for ISLES 2018 CT-based stroke segmentation[M]//Brainlesion: Glioma, multiple sclerosis, strokeand traumatic brain injuries. Cham: Springer, 2019:335-342. |
[55] | CHOUDHURY A R, VANGURI R, JAMBAWALIKARS R, et al. Segmentation of brain tumors usingDeepLabv3+ [M]//Brainlesion: Glioma, multiplesclerosis, stroke and traumatic brain injuries. Cham:Springer, 2019: 154-167. |
[56] | KERVADEC H, BOUCHTIBA J, DESROSIERS C, etal. Boundary loss for highly unbalanced segmentation[J]. Medical Image Analysis, 2021, 67: 101851. |
[57] | LIU P. Stroke lesion segmentation with 2D novel CNNpipeline and novel loss function [M]//Brainlesion:Glioma, multiple sclerosis, stroke and traumatic braininjuries. Cham: Springer, 2019: 253-262. |
[58] | FUCHIGAMI T, AKAHORI S, OKATANI T, et al. Ahyperacute stroke segmentation method using 3D UNetintegrated with physicians’ knowledge for NCCT[J]. Proceedings of SPIE, 2020, 11314: 113140G. |
[59] | GAO F, TAO M, LI X, et al. Accurate segmentation ofstroke in CT image based on deep learning [J]. Journalof Jilin University (Engineering and Technology Edition),2020, 50(2): 678-684 (in Chinese). |
[60] | MAIER O, SCHR¨ODER C, FORKERT N D, et al.Classifiers for ischemic stroke lesion segmentation:A comparison study [J]. Plos One, 2015, 10(12):e0145118. |
[61] | LIU Z, CAO C, DING S, et al. Towards clinical diagnosis:Automated stroke lesion segmentation on multispectralMR image using convolutional neural network[J]. IEEE Access, 2018, 6: 57006-57016. |
[62] | LIU L, KURGAN L, WU F, et al. Attention convolutionalneural network for accurate segmentation andquantification of lesions in ischemic stroke disease [J].Medical Image Analysis, 2020, 65: 101791. |
[63] | KARTHIK R, GUPTA U, JHA A, et al. A deep supervisedapproach for ischemic lesion segmentation frommultimodal MRI using Fully Convolutional Network[J]. Applied Soft Computing, 2019, 84: 105685. |
[64] | ZHOU Y, HUANG W, DONG P, et al. D-UNet:A dimension-fusion U shape network for chronicstroke lesion segmentation [J]. IEEE/ACM Transactionson Computational Biology and Bioinformatics,2021, 18(3): 940-950. |
[65] | XUE Y, FARHAT F G, BOUKRINA O, et al. A multipath2.5 dimensional convolutional neural network systemfor segmenting stroke lesions in brain MRI images[J]. NeuroImage: Clinical, 2020, 25: 102118. |
[66] | HUI H, ZHANG X, LI F, et al. A partitioning-stackingprediction fusion network based on an improved attentionU-Net for stroke lesion segmentation [J]. IEEEAccess, 2020, 8: 47419-47432. |
[67] | YANG H, HUANG W, QI K, et al. CLCI-Net: Crosslevelfusion and context inference networks for lesionsegmentation of chronic stroke [M]//Medical imagecomputing and computer assisted intervention-MICCAI 2019. Cham: Springer, 2019: 266-274. |
[68] | QI K, YANG H, LI C, et al. X-net: brainstroke lesion segmentation based on depthwiseseparable convolution and long-range dependencies[C]//International Conference on Medical Image Computingand Computer-Assisted Intervention. Cham:Springer, 2019: 247-255. |
[69] | LIU X, YANG H, QI K, et al. MSDF-Net: Multi-scaledeep fusion network for stroke lesion segmentation [J].IEEE Access, 2019, 7: 178486-178495. |
[70] | RODERICK D D CWR,WANG KM. Using cascadednetworks for post-stroke lesion [EB/OL]. [2020-08-01]. http://cs230.stanford.edu/projects spring 2018/reports/8288136.pdf. |
[71] | WANG Y, WANG H, CHEN S, et al. A 3Dcross-hemisphere neighborhood difference Convnet forchronic stroke lesion segmentation [C]//2019 IEEE InternationalConference on Image Processing (ICIP).Piscataway, NJ: IEEE, 2019: 1545-1549. |
[72] | WANG Y, KATSAGGELOS A K, WANG X, et al.A deep symmetry convnet for stroke lesion segmentation[C]//2016 IEEE International Conference on ImageProcessing (ICIP). Piscataway, NJ: IEEE, 2016:111-115. |
[73] | HAVAEI M, DAVY A, WARDE-FARLEY D, et al.Brain tumor segmentation with Deep Neural Networks[J]. Medical Image Analysis, 2017, 35: 18-31. |
[74] | PEREIRA S, PINTO A, ALVES V, et al. Brain tumorsegmentation using convolutional neural networks inMRI images [J]. IEEE Transactions on Medical Imaging,2016, 35(5): 1240-1251. |
[75] | LIU Z, CAO C, DING S, et al. Towards clinical diagnosis:Automated stroke lesion segmentation on multispectralMR image using convolutional neural network[J]. IEEE Access, 2018, 6: 57006-57016. |
[76] | GONZ′ALEZ R G, HIRSCH J A, KOROSHETZ WJ, et al. Acute ischemic stroke [M]. Berlin/Heidelberg:Springer, 2006. |
[77] | MOSTAPHA M, STYNER M. Role of deep learningin infant brain MRI analysis [J]. Magnetic ResonanceImaging, 2019, 64: 171-189. |
[78] | YI X, WALIA E, BABYN P. Generative adversarialnetwork in medical imaging: A review [J]. Medical ImageAnalysis, 2019, 58: 101552. |
[79] | ISAAC J S, KULKARNI R. Super resolution techniquesfor medical image processing [C]//2015 InternationalConference on Technologies for SustainableDevelopment (ICTSD). Piscataway, NJ: IEEE, 2015:1-6. |
[80] | MAHAPATRA D, BOZORGTABAR B, GARNAVIR. Image super-resolution using progressive generativeadversarial networks for medical image analysis[J]. Computerized Medical Imaging and Graphics, 2019,71: 30-39. |
[81] | BRIA A, MARROCCO C, TORTORELLA F. Addressingclass imbalance in deep learning for small lesiondetection on medical images [J]. Computers in Biologyand Medicine, 2020, 120: 103735. |
[82] | ANDO S, HUANG C Y. Deep over-sampling frameworkfor classifying imbalanced data [M]//Machinelearning and knowledge discovery in databases. Cham:Springer, 2017: 770-785. |
[83] | WONG S C, GATT A, STAMATESCU V, et al.Understanding data augmentation for classification:When to warp? [C]//2016 International Conferenceon Digital Image Computing: Techniques and Applications(DICTA). Piscataway, NJ: IEEE, 2016: 1-6. |
[84] | FRID-ADAR M, DIAMANT I, KLANG E, et al.GAN-based synthetic medical image augmentation forincreased CNN performance in liver lesion classification[J]. Neurocomputing, 2018, 321: 321-331. |
[85] | WANG S, ZHOU M, LIU Z, et al. Central focused convolutionalneural networks: Developing a data-drivenmodel for lung nodule segmentation [J]. Medical ImageAnalysis, 2017, 40: 172-183. |
[86] | GUO H, LI Y, SHANG J, et al. Learning from classimbalanceddata: Review of methods and applications[J]. Expert Systems with Applications, 2017, 73: 220-239. |
[87] | KAKAR M, OLSEN D R. Automatic segmentationand recognition of lungs and lesion from CT scans of thorax [J]. Computerized Medical Imaging and Graphics,2009, 33(1): 72-82. |
[88] | NARAYANA P A, CORONADO I, SUJIT S J, et al.Are multi-contrast magnetic resonance images necessaryfor segmenting multiple sclerosis brains A largecohort study based on deep learning [J]. Magnetic ResonanceImaging, 2020, 65: 8-14. |
[89] | KIM Y, LEE J, YU I, et al. Evaluation of diffusion lesionvolume measurements in acute ischemic stroke usingencoder-decoder convolutional network [J]. Stroke,2019, 50(6): 1444-1451. |
[90] | LORENZO P R, NALEPA J, BOBEK-BILLEWICZB, et al. Segmenting brain tumors from FLAIR MRIusing fully convolutional neural networks [J]. ComputerMethods And Programs In Biomedicine, 2019,176: 135-148. |
[91] | XU B, CHAI Y, GALARZA C M, et al. Orchestralfully convolutional networks for small lesion segmentationin brain MRI [C]//2018 IEEE 15th InternationalSymposium on Biomedical Imaging (ISBI 2018). Piscataway,NJ: IEEE, 2018: 889-892. |
[92] | KRIVOV E, KOSTJUCHENKO V, DALECHINA A,et al. Tumor delineation for brain radiosurgery bya ConvNet and non-uniform patch generation [M]//Patch-based techniques in medical imaging. Cham:Springer, 2018: 122-129. |
[93] | GUERRERO R, QIN C, OKTAY O, et al. White matterhyperintensity and stroke lesion segmentation anddifferentiation using convolutional neural networks [J].NeuroImage: Clinical, 2018, 17: 918-934. |
[94] | LI H, PARIKH N A, WANG J, et al. Objective andautomated detection of diffuse white matter abnormalityin preterm infants using deep convolutional neuralnetworks [J]. Frontiers in Neuroscience, 2019, 13: 610. |
[95] | FANG M, DONG D, SUN R, et al. Using multi-tasklearning to improve diagnostic performance of convolutionalneural networks [J]. Proceedings of SPIE, 2019,10950: 109501V. |
[96] | SAMALA R K, CHAN H P, HADJIISKI L M, et al.Multi-task transfer learning deep convolutional neuralnetwork: Application to computer-aided diagnosisof breast cancer on mammograms [J]. Physics inMedicine & Biology, 2017, 62(23): 8894-8908. |
[1] | CAI Shuyu∗ (蔡舒妤), SHI Lizhong (师利中). Airframe Damage Region Division Method Based on Structure Tensor Dynamic Operator [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(6): 757-767. |
[2] | KANG Jie* (亢洁), DING Jumin (丁菊敏), LEI Tao (雷涛),FENG Shujie (冯树杰), LIU Gang (刘港). Interactive Liver Segmentation Algorithm Based on Geodesic Distance and V-Net [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(2): 190-201. |
[3] | ZOU Yue (邹 悦), LI Lin (李 霖), YANG Xubo (杨旭波). Lightweight Method for Vehicle Re-identification Using Reranking Algorithm Based on Topology Information of Surveillance Network [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(5): 577-586. |
[4] | LI Lin (李 霖), HU Zeyu(胡泽宇), YANG Xubo (杨旭波). Intelligent Analysis of Abnormal Vehicle Behavior Based on a Digital Twin [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(5): 587-597. |
[5] | ZHAN Zhu (占竹), ZHANG Wenjun (张文俊), CHEN Xia (陈霞), WANG Jun (汪军) . Objective Evaluation of Fabric Flatness Grade Based on Convolutional Neural Network [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 503-510. |
[6] | XU Jiangchang (许江长), HE Shamin (何莎敏), YU Dedong (于德栋), WU Yiqun (吴轶群), CHEN Xiaojun, (陈晓军). Automatic Segmentation Method for Cone-Beam Computed Tomography Image of the Bone Graft Region within Maxillary Sinus Based on the Atrous Spatial Pyramid Convolution Network [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(3): 298-305. |
[7] | ZHANG Yue (张月), LIU Shijie (刘世界), LI Chunlai (李春来), WANG Jianyu (王建宇). Rethinking the Dice Loss for Deep Learning Lesion Segmentation in Medical Images [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(1): 93-102. |
[8] | WU Jin, MIN Yu, YANG Xiaodie, MA Simin . Micro-Expression Recognition Algorithm Based on Information Entropy Feature [J]. Journal of Shanghai Jiao Tong University(Science), 2020, 25(5): 589-599. |
[9] | LIU Min, DENG Bin, TANG Ying, WU Minghu, WANG Juan . Low-Cost Approach for Improving Video Transmission Efficiency in WVSN [J]. Journal of Shanghai Jiao Tong University(Science), 2020, 25(5): 600-605. |
[10] | WANG Yuzong (王毓综), DENG Fei (邓飞), ZHAO Daxu (赵大旭), YE Jiaying (叶佳英), WANG Peixin (王佩欣), SHOU Guozhong (寿国忠). Monocular Dynamic Machine Vision-Based Pearl Shape Detection [J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(5): 654-662. |
[11] | LI Dan (李丹), NIU Zhongbin (牛中彬), PENG Dongxu (彭冬旭) . Magnetic Tile Surface Defect Detection Based on Texture Feature Clustering [J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(5): 663-670. |
[12] | XUE Ankang (薛安康), LI Fan* (李凡), XIONG Yin (熊吟). Automatic Identification of Butterfly Species Based on Gray-Level Co-occurrence Matrix Features of Image Block [J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(2): 220-225. |
[13] | ZHOU Jingmei *(周经美), ZHAO Xiangmo (赵祥模), CHENG Xin (程鑫), XU Zhigang (徐志刚), ZHAO Huaixin (赵怀鑫). Vehicle Ego-Localization Based on Streetscape Image Database Under Blind Area of Global Positioning System [J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(1): 122-129. |
[14] | MA Jin (马进), XUE Teng (薛腾), SHAO Quanquan (邵全全), HU Jie (胡洁), WANG Weiming (王伟明) . Research on Spatially Adaptive High-Order Total Variation Model for Weak Fluorescence Image Restoration [J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(Sup. 1): 1-7. |
[15] | ZHANG Yanghao (张洋豪), ZENG Shaoning (曾少宁), ZENG Wei (曾威), GOU Jianping (苟建平). GNN-CRC: Discriminative Collaborative Representation-Based Classification via Gabor Wavelet Transformation and Nearest Neighbor [J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(5): 657-665. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||