[1] |
ZHOU Y. Monographia rhopalocerorum sinensium[M]. Zhengzhou, China: Henan Science and TechnologyPress, 1994 (in Chinese).
|
[2] |
GASTON K J, O’NEILL M A. Automated speciesidentification: Why not? [J]. Philosophical Transactionsof The Royal Society B, Biological Sciences, 2004,359(1444): 655-667.
|
[3] |
GASTON K J, MAY R M. Taxonomy of taxonomists[J]. Nature, 1992, 356: 281-282.
|
[4] |
WEEKS P J D, O’NEILL M A, GASTON K J, et al.Species-identification of wasps using principal componentassociative memories [J]. Image and Vison Computing,1999, 17(12): 861-966.
|
[5] |
WEEKS P J D, O’NEILL M A, GASTON K J, et al.Automating insect identification: Exploring the limitationsof a prototype system [J]. Journal of AppliedEntomology, 2010, 123(1): 1-8.
|
[6] |
HOPKINS G W, FRECKLETON R P. Declines in thenumbers of amateur and professional taxonomists: Implicationsfor conservation [J]. Animal Conservation,2010, 5(3): 245-249.
|
[7] |
ARBUCKLE B, SCHR¨OEDER S, STEINHAGE V,et al. Biodiversity informatics in action: Identificationand monitoring of bee species using ABIS[C]//Proceedings of 15th International Symposium Informaticsfor Environment Protection. Marburg, Germany:Metropolis Verlag, 2001: 425-430.
|
[8] |
YAO Q, LV J, LIU Q J, et al. An insect imaging systemto automate rice light-trap pest identification [J].Journal of Integrative Agriculture, 2012, 11(6): 978-985.
|
[9] |
KAYA Y, KAYCI L. Application of artificial neuralnetwork for automatic detection of butterfly speciesusing color and texture features [J]. Visual Computer,2014, 30(1): 71-79.
|
[10] |
KANG S H, CHO J H, LEE S H. Identification of butterflybased on their shapes when viewed from differentangles using an artificial neural network [J]. Journal ofAsia-Pacific Entomology, 2014, 17(2): 143-149.
|
[11] |
WANG J N, JI L Q, LIANG A P, et al. The identificationof butterfly families using content based image retrieval[J]. Biosystems Engineering, 2012, 111(1): 24-32.
|
[12] |
KAYA Y, KAYCI L, TEKIN R. A computer vision systemfor the automatic identification of butterfly speciesvia Gabor-Filter-Based texture features and extremelearning machine: GF+ELM [J]. TEM Journal, 2013,2(1): 13-20.
|
[13] |
VANITHA R, PREMANANDA R. Content based imageretrieval using color and texture feature [J]. InternationalJournal of Advanced Technology in Engineeringand Science, 2014, 2(6): 308-318.
|
[14] |
HUANG K Y. Application of artificial neural networkfor detecting Phalaenopsis seedling diseases using colorand texture features [J]. Computers and Electronics inAgriculture, 2007, 57(1): 3-11.
|
[15] |
KANG S H, JEON W, LEE S H. Butterfly speciesidentification by branch length similarity entropy [J].Journal of Asia-Pacific Entomology, 2012, 15(3): 437-441.
|
[16] |
LI H F, CHAI Y, LI Z F. A new fusion scheme for multifocusimages based on focused pixels detection [J].Machine Vision and Applications, 2013, 24(6): 1167-1181.
|
[17] |
LI H F, LIU X K, YU Z T, et al. Performance improvementscheme of multifocus image fusion derivedby difference images [J]. Signal Processing, 2016, 128:474-493.
|
[18] |
LI H F, LI X S, YU Z T, et al. Multifocus image fusionby combining with mixed-order structure tensorsand multiscale neighborhood [J]. Information Sciences,2016, 349: 25-49.
|
[19] |
LI H F, YU Z T, MAO C L. Fractional differentialand variational method for image fusion and superresolution[J]. Neurocomputing, 2016, 171: 138-148.
|
[20] |
LI H F, QIU H M, YU Z T, et al. Multifocus imagefusion via fixed window technique of multiscale imagesand non-local means filtering [J]. Signal Processing,2017, 138: 71-85.
|