J Shanghai Jiaotong Univ Sci ›› 2022, Vol. 27 ›› Issue (1): 112-120.doi: 10.1007/s12204-021-2331-3
• Robotics & AI in Interdisciplinary Medicine and Engineering • Previous Articles Next Articles
XIA Ming (夏明), XU Tianyi (徐天意), JIANG Hong∗ (姜虹)
Received:
2021-05-08
Online:
2022-01-28
Published:
2022-01-14
CLC Number:
XIA Ming (夏明), XU Tianyi (徐天意), JIANG Hong∗ (姜虹). Progress and Perspective of Artificial Intelligence and Machine Learning of Prediction in Anesthesiology[J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 112-120.
[1] | JORDAN M I, MITCHELL T M. Machine learning:Trends, perspectives, and prospects [J]. Science, 2015,349(6245): 255-260. |
[2] | IBRAHIMA, PRIMAKOV S, BEUQUEM, et al. Radiomicsfor precision medicine: Current challenges, futureprospects, and the proposal of a new framework[J]. Methods, 2021, 188: 20-29. |
[3] | ANEJA S, CHANG E, OMURO A. Applications ofartificial intelligence in neuro-oncology [J]. CurrentOpinion in Neurology, 2019, 32(6): 850-856. |
[4] | SCHWYZER M, MARTINI K, BENZ D C, et al. Artificialintelligence for detecting small FDG-positivelung nodules in digital PET/CT: Impact of image reconstructionson diagnostic performance [J]. EuropeanRadiology, 2020, 30(4): 2031-2040. |
[5] | LAURITSEN S M, KRISTENSENM, OLSEN M V, etal. Explainable artificial intelligence model to predictacute critical illness from electronic health records [J].Nature Communications, 2020, 11(1): 3852. |
[6] | GUNASEKERAN D V, TING D S W, TAN G SW, et al. Artificial intelligence for diabetic retinopathyscreening, prediction and management [J]. CurrentOpinion in Ophthalmology, 2020, 31(5): 357-365. |
[7] | LOFTUS T J, TIGHE P J, FILIBERTO A C, et al.Artificial intelligence and surgical decision-making [J].JAMA Surgery, 2020, 155(2): 148-158. |
[8] | SHORTLIFFE E H, SEP′ULVEDA M J. Clinical decisionsupport in the era of artificial intelligence [J].JAMA, 2018, 320(21): 2199-2200. |
[9] | LEE M S, GRABOWSKI M M, HABBOUB G, etal. The impact of artificial intelligence on quality andsafety [J]. Global Spine Journal, 2020, 10(Sup. 1): 99-103. |
[10] | HOGARTY D T, MACKEY D A, HEWITT A W.Current state and future prospects of artificial intelligencein ophthalmology: A review [J]. Clinical & ExperimentalOphthalmology, 2019, 47(1): 128-139. |
[11] | WANG S Y, PERSHING S, LEE A Y, et al. Bigdata requirements for artificial intelligence [J]. CurrentOpinion in Ophthalmology, 2020, 31(5): 318-323. |
[12] | CONNOR C W. Artificial intelligence and machinelearning in anesthesiology [J]. Anesthesiology, 2019,131(6): 1346-1359. |
[13] | RAJKOMAR A, DEAN J, KOHANE I.Machine learningin medicine [J]. The New England Journal ofMedicine, 2019, 380(14): 1347-1358. |
[14] | HOWARD J. Artificial intelligence: Implications forthe future of work [J]. American Journal of IndustrialMedicine, 2019, 62(11): 917-926. |
[15] | HANDELMAN G S, KOK H K, CHANDRA R V, et al.eDoctor: Machine learning and the future of medicine[J]. Journal of Internal Medicine, 2018, 284(6): 603-619. |
[16] | MOORE M M, SLONIMSKY E, LONG A D, et al.Machine learning concepts, concerns and opportunitiesfor a pediatric radiologist [J]. Pediatric Radiology,2019, 49(4): 509-516. |
[17] | UDDINS, KHANA, HOSSAINME, et al. Comparingdifferent supervised machine learning algorithms fordisease prediction [J]. BMC Medical Informatics andDecision Making, 2019, 19(1): 281. |
[18] | CRUZ J A, WISHART D S. Applications of machinelearning in cancer prediction and prognosis [J]. CancerInformatics, 2007, 2: 59-77. |
[19] | ZHAO X, WU Y H, LEE D L, et al. iForest: Interpretingrandom forests via visual analytics [J]. IEEETransactions on Visualization and Computer Graphics,2019, 25(1): 407-416. |
[20] | HASHIMOTO D A, WITKOWSKI E, GAO L, et al.Artificial intelligence in anesthesiology: Current techniques,clinical applications, and limitations [J]. Anesthesiology,2020, 132(2): 379-394. |
[21] | PERGIALIOTIS V, POULIAKIS A, PARTHENIS C,et al. The utility of artificial neural networks and classificationand regression trees for the prediction of endometrialcancer in postmenopausal women [J]. PublicHealth, 2018, 164: 1-6. |
[22] | HINTON G. Deep learning: A technology with thepotential to transform health care [J]. JAMA, 2018,320(11): 1101-1102. |
[23] | LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. |
[24] | GREGORY A, STAPELFELDT W H, KHANNA AK, et al. Intraoperative hypotension is associated withadverse clinical outcomes after noncardiac surgery [J].Anesthesia and Analgesia, 2021, 132(6): 1654-1665. |
[25] | SMISCHNEY N J, SHAWA D, STAPELFELDTWH,et al. Postoperative hypotension in patients dischargedto the intensive care unit after non-cardiac surgery isassociated with adverse clinical outcomes [J]. CriticalCare (London, England), 2020, 24(1): 682. |
[26] | HATIB F, JIAN Z P, BUDDI S, et al. Machinelearningalgorithm to predict hypotension based onhigh-fidelity arterial pressure waveform analysis [J].Anesthesiology, 2018, 129(4): 663-674. |
[27] | DAVIES S J, VISTISEN S T, JIAN Z P, et al. Abilityof an arterial waveform analysis-derived hypotensionprediction index to predict future hypotensive events in surgical patients [J]. Anesthesia and Analgesia,2020, 130(2): 352-359. |
[28] | WIJNBERGE M, GEERTS B F, HOL L, et al. Effectof a machine learning-derived early warning systemfor intraoperative hypotension vs standard careon depth and duration of intraoperative hypotensionduring elective noncardiac surgery: The HYPE randomizedclinical trial [J]. JAMA, 2020, 323(11): 1052-1060. |
[29] | MAHESHWARI K, BUDDI S, JIAN Z P, et al. Performanceof the Hypotension Prediction Index with noninvasivearterial pressure waveforms in non-cardiacsurgical patients [J]. Journal of Clinical Monitoringand Computing, 2021, 35(1): 71-78. |
[30] | LIN C S, CHANG C C, CHIU J S, et al. Applicationof an artificial neural network to predict postinductionhypotension during general anesthesia [J]. Medical DecisionMaking, 2011, 31(2): 308-314. |
[31] | KENDALE S, KULKARNI P, ROSENBERG A D,et al. Supervised machine-learning predictive analyticsfor prediction of postinduction hypotension [J]. Anesthesiology,2018, 129(4): 675-688. |
[32] | KANG A R, LEE J, JUNG W, et al. Development ofa prediction model for hypotension after induction ofanesthesia using machine learning [J]. PLoS One, 2020,15(4): e0231172. |
[33] | LUNDBERG S M, NAIR B, VAVILALA M S, etal. Explainable machine-learning predictions for theprevention of hypoxaemia during surgery [J]. NatureBiomedical Engineering, 2018, 2(10): 749-760. |
[34] | GENG W, TANG H, SHARMA A, et al. An artificialneural network model for prediction of hypoxemiaduring sedation for gastrointestinal endoscopy [J].The Journal of International Medical Research, 2019,47(5): 2097-2103. |
[35] | APFEL C C, KRANKE P, EBERHART L H J, etal. Comparison of predictive models for postoperativenausea and vomiting [J]. British Journal of Anaesthesia,2002, 88(2): 234-240. |
[36] | EBERHART L H J, H¨OGEL J, SEELING W, et al.Evaluation of three risk scores to predict postoperativenausea and vomiting [J]. Acta AnaesthesiologicaScandinavica, 2000, 44(4): 480-488. |
[37] | TRAEGER M, EBERHART A, GELDNER G, et al.Prediction of postoperative nausea and vomiting usingan artificial neural network [J]. Der Anaesthesist, 2003,52(12): 1132-1138. |
[38] | PENG S Y, WU K C, WANG J J, et al. Predictingpostoperative nausea and vomiting with the applicationof an artificial neural network [J]. British Journalof Anaesthesia, 2007, 98(1): 60-65. |
[39] | GONG C S A, YU L, TING C K, et al. Predictingpostoperative vomiting for orthopedic patients receivingpatient-controlled epidural analgesia with the applicationof an artificial neural network [J]. BioMedResearch International, 2014, 2014: 786418. |
[40] | WU H Y, GONG C A, LIN S P, et al. Predicting postoperativevomiting among orthopedic patients receivingpatient-controlled epidural analgesia using SVMand LR [J]. Scientific Reports, 2016, 6: 27041. |
[41] | WHITLOCK E L, FEINER J R, CHEN L L. Perioperativemortality, 2010 to 2014: A retrospective cohortstudy using the national anesthesia clinical outcomesregistry [J]. Anesthesiology, 2015, 123(6): 1312-1321. |
[42] | HOVE L D, STEINMETZ J, CHRISTOFFERSEN JK, et al. Analysis of deaths related to anesthesia in theperiod 1996-2004 from closed claims registered by theDanish Patient Insurance Association [J]. Anesthesiology,2007, 106(4): 675-680. |
[43] | DETSKY M E, JIVRAJ N, ADHIKARI N K, et al.Will this patient be difficult to intubate? [J]. JAMA,2019, 321(5): 493. |
[44] | CONNOR C W, SEGAL S. The importance of subjectivefacial appearance on the ability of anesthesiologiststo predict difficult intubation [J]. Anesthesia andAnalgesia, 2014, 118(2): 419-427. |
[45] | CONNOR C W, SEGAL S. Accurate classification ofdifficult intubation by computerized facial analysis [J].Anesthesia and Analgesia, 2011, 112(1): 84-93. |
[46] | CUENDET G L, SCHOETTKER P, Y¨UCE A, et al.Facial image analysis for fully automatic predictionof difficult endotracheal intubation [J]. IEEE Transactionson Biomedical Engineering, 2016, 63(2): 328-339. |
[47] | MATAVA C, PANKIV E, AHUMADA L, et al. Artificialintelligence, machine learning and the pediatricairway [J]. Paediatric Anaesthesia, 2020, 30(3): 264-268. |
[48] | DING Y M, WANG J X, GAO J D, et al. Severityevaluation of obstructive sleep apnea based on speechfeatures [J]. Sleep and Breathing, 2021, 25(2): 787-795. |
[49] | ESPINOZA-CUADROS F, FERN′ANDEZ-POZO R,TOLEDANO D T, et al. Speech signal and facialimage processing for obstructive sleep apnea assessment[J]. Computational and Mathematical Methods inMedicine, 2015, 2015: 489761. |
[50] | LIN C S, LI Y C, MOK M S, et al. Neural networkmodeling to predict the hypnotic effect of propofolbolus induction [C]//AMIA 2002 Annual SymposiumProceedings. San Antonio, TX: AMIA, 2002: 450-453. |
[51] | IONESCU C M, DE KEYSER R, TORRICO B C,et al. Robust predictive control strategy applied forpropofol dosing using BIS as a controlled variable duringanesthesia [J]. IEEE Transactions on BiomedicalEngineering, 2008, 55(9): 2161-2170. |
[52] | SEP′ULVEDA P O, CORT′INEZ L I, RECARTA, et al.Predictive ability of propofol effect-site concentrationsduring fast and slow infusion rates [J]. Acta AnaesthesiologicaScandinavica, 2010, 54(4): 447-452. |
[53] | YI J M, DOH I, LEE S H, et al. Predictive performanceof a new pharmacokinetic model for propofol inunderweight patients during target-controlled infusion[J]. Acta Anaesthesiologica Scandinavica, 2019, 63(4):448-454. |
[54] | NUNES C S, MENDONCA T F, AMORIM P, et al.Radial basis function neural networks versus fuzzy models to predict return of consciousness after generalanesthesia [C]//Proceedings of the 26th Annual InternationalConference of the IEEE EMBS. San Francisco,CA: IEEE, 2004: 865-868. |
[55] | SANTANEN O A P, SVARTLING N, HAASIO J, etal. Neural nets and prediction of the recovery rate fromneuromuscular block [J]. European Journal of Anaesthesiology,2003, 20(2): 87-92. |
[56] | NAIR A A, VELAGAPUDI M A, LANG J A, et al.Machine learning approach to predict postoperativeopioid requirements in ambulatory surgery patients [J].PLoS One, 2020, 15(7): e0236833. |
[57] | LEE S, WEI S J, WHITE V, et al. Classification ofopioid usage through semi-supervised learning for totaljoint replacement patients [J]. IEEE Journal ofBiomedical and Health Informatics, 2021, 25(1): 189-200. |
[58] | LU Y N, FORLENZA E, WILBUR R R, etal. Machine-learning model successfully predicts patientsat risk for prolonged postoperative opioiduse following elective knee arthroscopy [J]. KneeSurgery, Sports Traumatology, Arthroscopy, 2021.https://doi.org/10.1007/s00167-020-06421-7. |
[59] | ELLIS R J, WANG Z C, GENES N, et al. Predictingopioid dependence from electronic health records withmachine learning [J]. BioData Mining, 2019, 12: 3. |
[60] | JUNGQUIST C R, CHANDOLA V, SPULECKI C,et al. Identifying patients experiencing opioid-inducedrespiratory depression during recovery from anesthesia:The application of electronic monitoring devices[J]. Worldviews on Evidence-Based Nursing, 2019,16(3): 186-194. |
[61] | RAHMAN Q A, JANMOHAMED T, CLARKE H, etal. Interpretability and class imbalance in predictionmodels for pain volatility in manage my pain app users:Analysis using feature selection and majority votingmethods [J]. JMIR Medical Informatics, 2019, 7(4):e15601. |
[62] | HU Y J, KU T H, JAN R H, et al. Decision treebasedlearning to predict patient controlled analgesiaconsumption and readjustment [J]. BMC Medical Informaticsand Decision Making, 2012, 12: 131. |
[63] | MILLER D D, BROWN E W. Artificial intelligence inmedical practice: The question to the answer? [J]. TheAmerican Journal of Medicine, 2018, 131(2): 129-133. |
[64] | ALEXANDER J C, JOSHI G P. Anesthesiology, automation,and artificial intelligence [J]. Baylor UniversityMedical Center Proceedings, 2018, 31(1): 117-119. |
[65] | LI W, LIU H, YANG P, et al. Supporting regularizedlogistic regression privately and efficiently [J]. PLoSOne, 2016, 11(6): e0156479. |
[66] | CHAPALAIN X, HUET O. Is artificial intelligence(AI) at the doorstep of Intensive Care Units (ICU)and operating room (OR)? [J]. Anaesthesia, CriticalCare & Pain Medicine, 2019, 38(4): 337-338. |
[67] | CHAR D S, SHAH N H, MAGNUS D. Implementingmachine learning in health care-addressing ethicalchallenges [J]. The New England Journal of Medicine,2018, 378(11): 981-983. |
[1] | JIA Dengqiang* (贾灯强), LUO Xinzhe (罗鑫喆), DING Wangbin (丁王斌),HUANG Liqin (黄立勤), ZHUANG Xiahai (庄吓海). SeRN: A Two-Stage Framework of Registration for Semi-Supervised Learning for Medical Images [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(2): 176-189. |
[2] | KANG Jie* (亢洁), DING Jumin (丁菊敏), LEI Tao (雷涛),FENG Shujie (冯树杰), LIU Gang (刘港). Interactive Liver Segmentation Algorithm Based on Geodesic Distance and V-Net [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(2): 190-201. |
[3] | TANG Na (唐纳), GU Jianjun (顾坚骏), YIN Xiaorui (尹肖睿), YU Rongjiang (虞容江),XU Yuantao (徐元涛), LI Xiang (李想), WANG Han* (王悍). Evaluation Value of Intravoxel Incoherent Motion Diffusion-Weighted Imaging on Early Efficacy of Magnetic Resonance-Guided High-Intensity Focused Ultrasound Ablation for Uterine Adenomyoma [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(2): 226-230. |
[4] | XIA Ming (夏明), XU Tianyi (徐天意), CAO Shuang (曹爽),ZHOU Ren (周韧), JIANG Hong* (姜虹). Evaluation of a Novel Multimodal Guidance Device for Difficult Airway Endotracheal Intubation in Spontaneously Breathing Pigs [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(2): 256-263. |
[5] | XU Tianyi (徐天意), XIA Ming (夏明), JIANG Hong (姜虹). Advances in Medicine-Engineering Crossover in Automated Anesthesia [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(2): 137-143. |
[6] | WANG Zhiming(王志明), DONG Jingjing (董静静), ZHANG Junpeng∗ (张军鹏). Multi-Model Ensemble Deep Learning Method to Diagnose COVID-19 Using Chest Computed Tomography Images [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 70-80. |
[7] | BU Ran (卜冉), XIANG Wei∗ (向伟), CAO Shitong (曹世同). COVID-19 Interpretable Diagnosis Algorithm Based on a Small Number of Chest X-Ray Samples [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 81-89. |
[8] | ZHANG Shengfa (张胜发), TANG Na (唐纳), SHEN Guofeng (沈国峰), WANG Han (王悍), QIAO Shan (乔杉). Universal Software Architecture of Magnetic Resonance-Guided Focused Ultrasound Surgery System and Experimental Study [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 471-481. |
[9] | QU Yang (曲扬), YAN Mengning (严孟宁), LI Xiaomin (李小敏), WU Bing (吴兵), LIU Siyu (柳思宇), WANG Liao (王燎), WU Wen(武文), AI Songtao(艾松涛). Image Registration Technique for Assessing the Accuracy of Intraoperative Osteotomy for Pelvic Tumors by 3D-Printed Patient-Specific Templates [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(3): 306-311. |
[10] | LI Xiaomin (李小敏), DAI Xiaoqing(戴晓庆), GUO Jiuhong (郭久红), QU Yang (曲扬), WU Bing (吴兵), LIU Siyu (柳思宇), WAN Daqian (万大千), AI Songtao(艾松涛). Application of 3D Printing and WebGL-Based 3D Visualisation Technology in Imaging Teaching of Ankle Joints [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(3): 319-324. |
[11] | LIU Bing (刘冰), WANG Pu (王朴), ZHOU Min (周敏), GUO Yi (过依), DAI Ranran (戴然然) . Brief ICF Core Set for Obstructive Pulmonary Diseases: Validation from the Perspective of Chinese Respiratory Physicians [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(1): 25-32. |
[12] | HUANG Ningning (黄宁宁), MA Yixin (马艺馨), ZHANG Mingzhu (张明珠), GE Hao (葛浩), WU Huawei (吴华伟). Finite Element Modeling of Human Thorax Based on MRI Images for EIT Image Reconstruction [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(1): 33-39. |
[13] | XU Yan-ran (徐嫣然), ZHAO Jun*(赵俊). Segmentation of Haustral Folds and Polyps on Haustral Folds in CT Colonography Using Complementary Geodesic Distance Transformation [J]. Journal of shanghai Jiaotong University (Science), 2014, 19(5): 513-520. |
[14] | XU Yan-ran (徐嫣然), ZHAO Jun* (赵俊). Computer-Aided Detection for CT Colonography [J]. Journal of shanghai Jiaotong University (Science), 2014, 19(5): 531-537. |
[15] | FANG Juan (方娟), XIE Le (谢叻), YANG Guo-yuan* (杨国源). Review on the Interlimb Neural Coupling and Its Potential Usage in Walking Rehabilitation [J]. Journal of shanghai Jiaotong University (Science), 2014, 19(5): 561-564. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||