Journal of Shanghai Jiao Tong University ›› 2024, Vol. 58 ›› Issue (3): 263-272.doi: 10.16183/j.cnki.jsjtu.2022.306
• New Type Power System and the Integrated Energy • Previous Articles Next Articles
QU Keqing1, DONG Hao1, MAO Ling1(), ZHAO Jinbin1, YANG Jianlin2, LI Fen1
Received:
2022-08-04
Revised:
2022-09-14
Accepted:
2022-09-22
Online:
2024-03-28
Published:
2024-03-28
CLC Number:
QU Keqing, DONG Hao, MAO Ling, ZHAO Jinbin, YANG Jianlin, LI Fen. SOH Online Estimation of Lithium-Ion Batteries Based on Fusion Health Factor and Integrated Extreme Learning Machine[J]. Journal of Shanghai Jiao Tong University, 2024, 58(3): 263-272.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2022.306
Tab.1
Correlation analysis between IHF and SOH of each battery
电池编号 | Pearson系数 | Spearman系数 |
---|---|---|
B0005 | 0.9950 | 0.9952 |
B0006 | 0.9931 | 0.9965 |
B0007 | 0.9941 | 0.9964 |
B0018 | 0.9878 | 0.9805 |
Cell 1 | 0.9941 | 0.9977 |
Cell 2 | 0.9839 | 0.9937 |
Cell 3 | 0.9961 | 0.9992 |
Cell 4 | 0.9976 | 0.9993 |
Cell 5 | 0.9990 | 0.9989 |
Cell 6 | 0.9941 | 0.9989 |
Cell 7 | 0.9975 | 0.9990 |
Cell 8 | 0.9953 | 0.9990 |
Tab.2
Error index of SOH estimation results of each battery
电池编号 | MAE | MAPE | RMSE |
---|---|---|---|
B0005 | 0.0059 | 0.0073 | 0.0075 |
B0006 | 0.0094 | 0.0125 | 0.0117 |
B0007 | 0.0058 | 0.0063 | 0.0073 |
B0018 | 0.0110 | 0.0130 | 0.0127 |
Cell 1 | 0.0024 | 0.0032 | 0.0033 |
Cell 2 | 0.0073 | 0.091 | 0.0089 |
Cell 3 | 0.0025 | 0.0029 | 0.0031 |
Cell 4 | 0.0032 | 0.0037 | 0.0035 |
Cell 5 | 0.0021 | 0.0023 | 0.0028 |
Cell 6 | 0.0038 | 0.0046 | 0.0043 |
Cell 7 | 0.0016 | 0.0019 | 0.0021 |
Cell 8 | 0.0021 | 0.0024 | 0.0027 |
[1] |
SEVERSON K A, ATTIA P M, JIN N, et al. Data-driven prediction of battery cycle life before capacity degradation[J]. Nature Energy, 2019, 4(5): 383-391.
doi: 10.1038/s41560-019-0356-8 |
[2] |
ZHANG X W, QIN Y, YUEN C, et al. Time-series regeneration with convolutional recurrent generative adversarial network for remaining useful life estimation[J]. IEEE Transactions on Industrial Informatics, 2021, 17(10): 6820-6831.
doi: 10.1109/TII.2020.3046036 URL |
[3] |
卢地华, 陈自强. 基于双充电状态的锂离子电池健康状态估计[J]. 上海交通大学学报, 2022, 56(3): 342-352.
doi: 10.16183/j.cnki.jsjtu.2021.027 |
LU Dihua, CHEN Ziqiang. State of health estimation of lithium-ion batteries based on dual charging state[J]. Journal of Shanghai Jiao Tong University, 2022, 56(3): 342-352. | |
[4] | 孙丙香, 任鹏博, 陈育哲, 等. 锂离子电池在不同区间下的衰退影响因素分析及任意区间的老化趋势预测[J]. 电工技术学报, 2021, 36(3): 666-674. |
SUN Bingxiang, REN Pengbo, CHEN Yuzhe, et al. Analysis of influencing factors of degradation under different interval stress and prediction of aging trend in any interval for lithium-ion battery[J]. Transactions of China Electrotechnical Society, 2021, 36(3): 666-674. | |
[5] |
XIONG R, TIAN J P, MU H, et al. A systematic model-based degradation behavior recognition and health monitoring method for lithium-ion batteries[J]. Applied Energy, 2017, 207: 372-383.
doi: 10.1016/j.apenergy.2017.05.124 URL |
[6] |
GOU B, XU Y, FENG X. State-of-health estimation and remaining-useful-life prediction for lithium-ion battery using a hybrid data-driven method[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 10854-10867.
doi: 10.1109/TVT.25 URL |
[7] |
CHEN L, LIN W L, LI J Z, et al. Prediction of lithium-ion battery capacity with metabolic grey model[J]. Energy, 2016, 106: 662-672.
doi: 10.1016/j.energy.2016.03.096 URL |
[8] |
SCHUSTER S F, BACH T, FLEDER E, et al. Nonlinear aging characteristics of lithium-ion cells under different operational conditions[J]. Journal of Energy Storage, 2015, 1: 44-53.
doi: 10.1016/j.est.2015.05.003 URL |
[9] |
WAAG W, KÄBITZ S, SAUER D U. Experimental investigation of the lithium-ion battery impedance characteristic at various conditions and aging states and its influence on the application[J]. Applied Energy, 2013, 102: 885-897.
doi: 10.1016/j.apenergy.2012.09.030 URL |
[10] |
ZHANG C, ALLAFI W, DINH Q, et al. Online estimation of battery equivalent circuit model parameters and state of charge using decoupled least squares technique[J]. Energy, 2018, 142: 678-688.
doi: 10.1016/j.energy.2017.10.043 URL |
[11] | 刘湘东, 刘承志, 杨梓杰, 等. 基于无迹卡尔曼滤波的全钒液流电池状态估计[J]. 中国电机工程学报, 2018, 38(6): 1769-1777. |
LIU Xiangdong, LIU Chengzhi, YANG Zijie, et al. State estimation of all-vanadium flow battery based on unscented Kalman filter[J]. Proceedings of the CSEE, 2018, 38(6): 1769-1777. | |
[12] | 孙冬, 陈息坤. 基于离散滑模观测器的锂电池荷电状态估计[J]. 中国电机工程学报, 2015, 35(1): 185-191. |
SUN Dong, CHEN Xikun. Charge state estimation of Li-ion batteries based on discrete-time sliding mode observers[J]. Proceedings of the CSEE, 2015, 35(1): 185-191. | |
[13] |
LIU C, WANG Y J, CHEN Z H. Degradation model and cycle life prediction for lithium-ion battery used in hybrid energy storage system[J]. Energy, 2019, 166: 796-806.
doi: 10.1016/j.energy.2018.10.131 URL |
[14] |
LIU W, XU Y, FENG X. A hierarchical and flexible data-driven method for online state-of-health estimation of Li-ion battery[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 14739-14748.
doi: 10.1109/TVT.25 URL |
[15] |
徐宏东, 高海波, 徐晓滨, 等. 基于证据推理规则CS-SVR模型的锂离子电池SOH估算[J]. 上海交通大学学报, 2022, 56(4): 413-421.
doi: 10.16183/j.cnki.jsjtu.2021.345 |
XU Hongdong, GAO Haibo, XU Xiaobin, et al. State of health estimation of lithium-ion battery using a CS-SVR model based on evidence reasoning rule[J]. Journal of Shanghai Jiao Tong University, 2022, 56(4): 413-421. | |
[16] |
LI Y, LIU K L, FOLEY A M, et al. Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review[J]. Renewable and Sustainable Energy Reviews, 2019, 113: 109254.
doi: 10.1016/j.rser.2019.109254 URL |
[17] |
SHEN S, SADOUGHI M, CHEN X Y, et al. A deep learning method for online capacity estimation of lithium-ion batteries[J]. Journal of Energy Storage, 2019, 25: 100817.
doi: 10.1016/j.est.2019.100817 URL |
[18] | 王萍, 范凌峰, 程泽. 基于健康特征参数的锂离子电池SOH和RUL联合估计方法[J]. 中国电机工程学报, 2022, 42(4): 1523-1533. |
WANG Ping, FAN Lingfeng, CHENG Ze. A joint state of health and remaining useful life estimation approach for lithium-ion batteries based on health factor parameter[J]. Proceedings of the CSEE, 2022, 42(4): 1523-1533. | |
[19] | 王萍, 张吉昂, 程泽. 基于最小二乘支持向量机误差补偿模型的锂离子电池健康状态估计方法[J]. 电网技术, 2022, 46(2): 613-621. |
WANG Ping, ZHANG Ji’ang, CHENG Ze. Estimation method of lithium-ion battery health state based on least square support vector machine error compensation model[J]. Power System Technology, 2022, 46(2): 613-621. | |
[20] | 樊亚翔, 肖飞, 许杰, 等. 基于充电电压片段和核岭回归的锂离子电池SOH估计[J]. 中国电机工程学报, 2021, 41(16): 5661-5669. |
FAN Yaxiang, XIAO Fei, XU Jie, et al. SOH estimation of lithium-ion battery based on charging voltage segment and kernel ridge regression[J]. Proceedings of the CSEE, 2021, 41(16): 5661-5669. | |
[21] | 杨胜杰, 罗冰洋, 王菁, 等. 基于容量增量曲线峰值区间特征参数的锂离子电池健康状态估算[J]. 电工技术学报, 2021, 36(11): 2277-2287. |
YANG Shengjie, LUO Bingyang, WANG Jing, et al. State of health estimation for lithium-ion batteries based on peak region feature parameters of incremental capacity curve[J]. Transactions of China Electrotechnical Society, 2021, 36(11): 2277-2287. | |
[22] |
WANG Z P, YUAN C G, LI X Y. Lithium battery state-of-health estimation via differential thermal voltammetry with Gaussian process regression[J]. IEEE Transactions on Transportation Electrification, 2021, 7(1): 16-25.
doi: 10.1109/TTE.6687316 URL |
[23] | SAHA B, GOEBEL K. Battery data set: NASA Ames prognostics data repository[DB/OL]. (2021-12-13)[2022-08-04]. http://ti.arc.nasa.gov/project/prognostic-datarepository. |
[24] | BIRKL C. Diagnosis and prognosis of degradation in lithium-ion batteries[D]. Oxford, South East England, UK: University of Oxford, 2017. |
[25] |
HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: Theory and applications[J]. Neurocomputing, 2006, 70(1/3): 489-501.
doi: 10.1016/j.neucom.2005.12.126 URL |
[1] | ZHANG Xiaoyuan, ZHANG Jinhao, YANG Lixin. Interval Estimation of State of Health for Lithium Batteries Considering Different Charging Strategies [J]. Journal of Shanghai Jiao Tong University, 2024, 58(3): 273-284. |
[2] | XU Hongdong, GAO Haibo, XU Xiaobin, LIN Zhiguo, SHENG Chenxing. State of Health Estimation of Lithium-ion Battery Using a CS-SVR Model Based on Evidence Reasoning Rule [J]. Journal of Shanghai Jiao Tong University, 2022, 56(4): 413-421. |
[3] | LU Dihua, CHEN Ziqiang. [J]. Journal of Shanghai Jiao Tong University, 2022, 56(3): 342-352. |
[4] | JIANG Yu, CHEN Ziqiang. Average Temperature Estimation for Lithium-Ion Batteries at Variable Environment Temperature [J]. Journal of Shanghai Jiao Tong University, 2021, 55(7): 781-790. |
[5] | OU YANG Hongqun,LIU Wenfeng,SANG Mao,CHEN Lan,ZHU Ke,XIONG Xiaomin . Characteristic of Mechanical Spectra and Electronic Transport Property of LiCoO2 Ceramic [J]. Journal of Shanghai Jiaotong University, 2010, 44(05): 679-0682. |
[6] | . [J]. Journal of Shanghai Jiao Tong University, 0, (): 0-. |
[7] | . [J]. Journal of Shanghai Jiao Tong University, 0, (): 0-. |
[8] | . [J]. Journal of Shanghai Jiao Tong University, 0, (): 0-. |
[9] | . [J]. Journal of Shanghai Jiao Tong University, 0, (): 0-. |
[10] | . [J]. Journal of Shanghai Jiao Tong University, 0, (): 0-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||