Journal of Shanghai Jiao Tong University ›› 2024, Vol. 58 ›› Issue (6): 806-818.doi: 10.16183/j.cnki.jsjtu.2022.511
• New Type Power System and the Integrated Energy • Previous Articles Next Articles
LI Fen1(), SUN Ling1, WANG Yawei2, QU Aifang3, MEI Nian4, ZHAO Jinbin1
Received:
2022-12-09
Revised:
2023-03-14
Accepted:
2023-05-09
Online:
2024-06-28
Published:
2024-07-05
CLC Number:
LI Fen, SUN Ling, WANG Yawei, QU Aifang, MEI Nian, ZHAO Jinbin. Short-Term Interval Forecasting of Photovoltaic Power Based on CEEMDAN-GSA-LSTM and SVR[J]. Journal of Shanghai Jiao Tong University, 2024, 58(6): 806-818.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2022.511
Tab.2
Comparison of prediction performance of time series components
天气 | 分量 | GSA-LSTM | LSTM | BP | SVR | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
eS/% | eN/% | eS/% | eN/% | eS/% | eN/% | eS/% | eN/% | |||||
晴天 | HIMF1 | 20.3 | 3.7 | 27.5 | 4.8 | 54.4 | 15.0 | 50.5 | 13.2 | |||
晴天 | HIMF2 | 21.4 | 3.5 | 26.3 | 5.2 | 52.3 | 14.3 | 49.4 | 14.5 | |||
晴天 | HIMF3 | 18.7 | 2.6 | 21.9 | 3.7 | 47.2 | 12.1 | 48.8 | 13.6 | |||
晴天 | HIMF7 | 18.2 | 2.1 | 19.9 | 3.6 | 48.1 | 9.9 | 41.0 | 10.3 | |||
转折 | HIMF1 | 47.0 | 10.1 | 59.5 | 14.7 | 94.4 | 44.2 | 89.2 | 42.7 | |||
转折 | HIMF2 | 39.2 | 9.7 | 60.3 | 15.6 | 94.6 | 43.1 | 87.6 | 42.0 | |||
转折 | HIMF3 | 35.4 | 6.4 | 52.0 | 12.3 | 88.7 | 38.5 | 88.7 | 36.3 | |||
转折 | HIMF7 | 29.1 | 5.5 | 52.3 | 13.3 | 83.3 | 40.3 | 82.1 | 36.9 | |||
阴雨 | HIMF1 | 45.5 | 13.2 | 70.6 | 44.0 | 110.5 | 55.5 | 100.3 | 57.2 | |||
阴雨 | HIMF2 | 40.3 | 12.1 | 65.5 | 42.5 | 103.2 | 52.4 | 97.0 | 51.4 | |||
阴雨 | HIMF3 | 41.2 | 10.1 | 71.3 | 35.4 | 99.9 | 43.6 | 92.3 | 40.2 | |||
阴雨 | HIMF7 | 38.9 | 7.8 | 62.2 | 32.1 | 101.2 | 44.2 | 90.1 | 41.1 |
Tab.3
Comparison of prediction performance of random components
天气 | 分量 | GSA-SVR | LSTM | BP | SVR | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
eS/% | eN/% | eS/% | eN/% | eS/% | eN/% | eS/% | eN/% | |||||
晴天 | HIMF4 | 25.7 | 7.1 | 39.0 | 10.5 | 42.3 | 10.0 | 36.2 | 9.2 | |||
晴天 | HIMF5 | 24.3 | 6.8 | 38.7 | 10.7 | 37.0 | 9.6 | 27.9 | 9.8 | |||
晴天 | HIMF6 | 22.4 | 5.6 | 32.2 | 8.8 | 31.1 | 8.4 | 30.2 | 8.0 | |||
转折 | HIMF4 | 60.0 | 17.5 | 75.4 | 34.7 | 86.3 | 35.4 | 67.8 | 22.3 | |||
转折 | HIMF5 | 57.1 | 20.3 | 69.7 | 32.8 | 83.3 | 34.9 | 62.4 | 24.6 | |||
转折 | HIMF6 | 50.9 | 15.4 | 75.2 | 30.9 | 75.1 | 31.6 | 55.3 | 18.7 | |||
阴雨 | HIMF4 | 62.4 | 20.5 | 87.3 | 42.4 | 99.9 | 45.4 | 69.4 | 22.9 | |||
阴雨 | HIMF5 | 56.2 | 19.6 | 89.0 | 40.0 | 97.1 | 41.0 | 64.4 | 27.1 | |||
阴雨 | HIMF6 | 54.8 | 18.7 | 83.5 | 34.9 | 89.0 | 35.7 | 59.9 | 21.0 |
Tab.4
Comparison of point prediction performance
天气 | CEEMDAN-GSA-LSTM 和SVR | EMD-GSA-LSTM | EMD-GSA-SVR | XGBoost-RC | CNN-LSTM | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
eS/% | eN/% | eS/% | eN/% | eS/% | eN/% | eS/% | eN/% | eS/% | eN/% | |||||
晴天 | 22.8 | 3.7 | 29.6 | 5.0 | 38.6 | 9.1 | 30.1 | 4.5 | 24.2 | 9.1 | ||||
转折 | 40.0 | 9.1 | 61.8 | 16.0 | 64.1 | 22.2 | 47.1 | 21.2 | 55.4 | 10.1 | ||||
阴雨 | 48.5 | 14.6 | 78.4 | 40.3 | 63.0 | 26.2 | 54.7 | 32.5 | 50.7 | 19.6 |
Tab.5
Comparison of adaptive analysis results
数据组别 | CEEMDAN-GSA-LSTM和SVR | EMD-GSA-LSTM | EMD-GSA-SVR | |||||
---|---|---|---|---|---|---|---|---|
eS/% | eN/% | eS/% | eN/% | eS/% | eN/% | |||
原始历史数据 | 48.5 | 14.6 | 78.4 | 40.3 | 63.0 | 26.2 | ||
D1 | 72.3 | 36.5 | 94.4 | 48.4 | 85.8 | 39.2 | ||
D2 | 73.4 | 38.9 | 98.9 | 53.3 | 91.1 | 57.1 | ||
D3 | 203.5 | 250.4 | 200.4 | 287.5 | 241.1 | 329.9 | ||
D4 | 212.3 | 233.9 | 240.1 | 298.8 | 242.9 | 310.5 |
Tab.6
Interval prediction performance at different confidence coefficients
置信 水平/ % | 晴天 | 转折 | 阴雨 | |||||
---|---|---|---|---|---|---|---|---|
QPICP | QPINAW | QPICP | QPINAW | QPICP | QPINAW | |||
95 | 1.0000 | 0.1307 | 0.9697 | 0.2393 | 0.9394 | 0.2238 | ||
80 | 0.9394 | 0.0984 | 0.9394 | 0.1876 | 0.9091 | 0.1733 | ||
60 | 0.8485 | 0.0703 | 0.8182 | 0.1382 | 0.6970 | 0.1282 | ||
40 | 0.6364 | 0.0460 | 0.6364 | 0.0923 | 0.4848 | 0.0864 |
Tab.7
Comparison of interval prediction performance
天气 | Johnson变换-正态分布 | 正态分布 | logistic分布 | KDE | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
QPICP | QPINAW | QPICP | QPINAW | QPICP | QPINAW | QPICP | QPINAW | ||||
晴天 | 1.0000 | 0.1307 | 0.9697 | 0.2022 | 1.0000 | 0.2234 | 1.0000 | 0.1988 | |||
转折 | 0.9697 | 0.2393 | 0.9394 | 0.3375 | 0.9394 | 0.3257 | 0.9697 | 0.3028 | |||
阴雨 | 0.9394 | 0.2238 | 0.8788 | 0.3452 | 0.9091 | 0.3532 | 0.9394 | 0.2961 |
[1] | 国家发展改革会, 国家能源局. 关于促进新时代新能源高质量发展的实施方案[EB/OL].(2022-05-30)[2022-05-30]. http://zfxxgk.nea.gov.cn/2022-05/30/c_1310608539.htm. |
National Development and Reform Commission, National Energy Administration. The implementation plan for promoting the high-quality development of new energy in a new era[EB/OL].(2022-05-30)[2022-05-30]. http://zfxxgk.nea.gov.cn/2022-05/30/c_1310608539.htm. | |
[2] | 张雲钦, 程起泽, 蒋文杰, 等. 基于EMD-PCA-LSTM的光伏功率预测模型[J]. 太阳能学报, 2021, 42(9): 62-69. |
ZHANG Yunqin, CHENG Qize, JIANG Wenjie, et al. Photovoltaic power prediction model based on EMD-PCA-LSTM[J]. Acta Energiae Solaris Sinica, 2021, 42(9): 62-69. | |
[3] | 叶林, 马明顺, 靳晶新, 等. 考虑风电-光伏功率相关性的因子分析-极限学习机聚合方法[J]. 电力系统自动化, 2021, 45(23): 31-40. |
YE Lin, MA Mingshun, JIN Jingxin, et al. Factor analysis-extreme learning machine aggregation method considering correlation of wind power and photovoltaic power[J]. Automation of Electric Power Systems, 2021, 45(23): 31-40. | |
[4] | 黎嘉明, 艾小猛, 文劲宇, 等. 光伏发电功率持续时间特性的概率分布定量分析[J]. 电力系统自动化, 2017, 41(6): 30-36. |
LI Jiaming, AI Xiaomeng, WEN Jinyu, et al. Quantitative analysis of probability distribution for duration time characteristic of photovoltaic power[J]. Automation of Electric Power Systems, 2017, 41(6): 30-36. | |
[5] |
李芬, 周尔畅, 孙改平, 等. 一种新型天气分型方法及其在光伏功率预测中的应用[J]. 上海交通大学学报, 2021, 55(12): 1510-1519.
doi: 10.16183/j.cnki.jsjtu.2021.264 |
LI Fen, ZHOU Erchang, SUN Gaiping, et al. A novel weather classification method and its application in photovoltaic power prediction[J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1510-1519. | |
[6] | 唐雅洁, 林达, 倪筹帷, 等. 基于XGBoost的双层协同实时校正超短期光伏预测[J]. 电力系统自动化, 2021, 45(7): 18-27. |
TANG Yajie, LIN Da, NI Chouwei, et al. XGBoost based Bi-layer collaborative real-time calibration for ultra-short-term photovoltaic prediction[J]. Automation of Electric Power Systems, 2021, 45(7): 18-27. | |
[7] | AGGA A, ABBOU A, LABBADI M, et al. CNN-LSTM: An efficient hybrid deep learning architecture for predicting short-term photovoltaic power production[J]. Electric Power Systems Research, 2022, 208: 107908. |
[8] | 万灿, 崔文康, 宋永华. 新能源电力系统概率预测:基本概念与数学原理[J]. 中国电机工程学报, 2021, 41(19): 6493-6509. |
WAN Can, CUI Wenkang, SONG Yonghua. Probabilistic forecasting for power systems with renewable energy sources: Basic concepts and mathematical principles[J]. Proceedings of the CSEE, 2021, 41(19): 6493-6509. | |
[9] | 黎敏, 林湘宁, 张哲原, 等. 超短期光伏出力区间预测算法及其应用[J]. 电力系统自动化, 2019, 43(3): 10-16. |
LI Min, LIN Xiangning, ZHANG Zheyuan, et al. Interval prediction algorithm for ultra-short-term photovoltaic output and its Application[J]. Automation of Electric Power Systems, 2019, 43(3): 10-16. | |
[10] | 杨茂, 王凯旋. 基于CEEMD-DBN模型的光伏出力日前区间预测[J]. 高电压技术, 2021, 47(4): 1156-1164. |
YANG Mao, WANG Kaixuan. Day-ahead interval forecasting of PV power based on CEEMD-DBN model[J]. High Voltage Engineering, 2021, 47(4): 1156-1164. | |
[11] | 茆美琴, 龚文剑, 张榴晨, 等. 基于EEMD-SVM方法的光伏电站短期出力预测[J]. 中国电机工程学报, 2013, 33(34): 17-24. |
MAO Meiqin, GONG Wenjian, ZHANG Liuchen, et al. Short-term photovoltaic generation forecasting based on EEMD-SVM combined method[J]. Proceedings of the CSEE, 2013, 33(34): 17-24. | |
[12] | ZHANG C, HUA L, JI C L, et al. An evolutionary robust solar radiation prediction model based on WT-CEEMDAN and IASO-optimized outlier robust extreme learning machine[J]. Applied Energy, 2022, 322: 119518. |
[13] | RASHEDI E, NEZAMABADI-POUR H, SARYAZDI S. GSA: A gravitational search algorithm[J]. Information Sciences, 2009, 179(13): 2232-2248. |
[14] | ALI KHAN T, LING S H. A novel hybrid gravitational search particle swarm optimization algorithm[J]. Engineering Applications of Artificial Intelligence, 2021, 102: 104263. |
[15] | 杨晶显, 张帅, 刘继春, 等. 基于VMD和双重注意力机制LSTM的短期光伏功率预测[J]. 电力系统自动化, 2021, 45(3): 174-182. |
YANG Jingxian, ZHANG Shuai, LIU Jichun, et al. Short-term photovoltaic power prediction based on variational mode decomposition and long shortterm memory with dual-stage attention mechanism[J]. Automation of Electric Power Systems, 2021, 45(3): 174-182. | |
[16] | 苏向敬, 周汶鑫, 李超杰, 等. 基于双重注意力LSTM神经网络的可解释海上风电出力预测[J]. 电力系统自动化, 2022, 46(7): 141-151. |
SU Xiangjing, ZHOU Wenxin, LI Chaojie, et al. Interpretable offshore wind power output forecasting based on long short-term memory neural network with dual-stage attention[J]. Automation of Electric Power Systems, 2022, 46(7): 141-151. | |
[17] | LIU R H, WEI J C, SUN G P, et al. A short-term probabilistic photovoltaic power prediction method based on feature selection and improved LSTM neural network[J]. Electric Power Systems Research, 2022, 210: 108069. |
[18] | LI J L, SONG Z H, WANG X F, et al. A novel offshore wind farm typhoon wind speed prediction model based on PSO-Bi-LSTM improved by VMD[J]. Energy, 2022, 251: 123848. |
[19] | 董春曦, 饶鲜, 杨绍全, 等. 支持向量机参数选择方法研究[J]. 系统工程与电子技术, 2004, 26(8): 1117-1120. |
DONG Chunxi, RAO Xian, YANG Shaoquan, et al. Method for selecting the parameters of support vector machines[J]. Systems Engineering & Electronics, 2004, 26(8): 1117-1120. | |
[20] | 徐浩, 姜新雄, 刘志成, 等. 基于概率预测的电网静态安全运行风险评估及主动调控策略[J]. 电力系统自动化, 2022, 46(1): 182-191. |
XU Hao, JIANG Xinxiong, LIU Zhicheng, et al. Probability prediction based risk assessment and proactive regulation and control strategy for static operation safety of power grid[J]. Automation of Electric Power Systems, 2022, 46(1): 182-191. | |
[21] | WANG H L, XU D X, MARTINEZ A. Parameter selection method for support vector machine based on adaptive fusion of multiple kernel functions and its application in fault diagnosis[J]. Neural Computing & Applications, 2020, 32(1): 183-193. |
[22] | SLIFKER J F, SHAPIRO S S. The Johnson system: Selection and parameter estimation[J]. Technometrics, 1980, 22(2): 239-246. |
[23] | HE Y Y, ZHENG Y Y. Short-term power load probability density forecasting based on Yeo-Johnson transformation quantile regression and Gaussian kernel function[J]. Energy, 2018, 154: 143-156. |
[24] | 汪冬华. 多元统计分析与SPSS应用[M]. 上海: 华东理工大学出版社, 2010. |
WANG Donghua. Multivariate statistical analysis and SPSS application[M]. Shanghai: East China University of Science and Technology Press, 2010. | |
[25] | LI F, LIN Y L, GUO J P, et al. Novel models to estimate hourly diffuse radiation fraction for global radiation based on weather type classification[J]. Renewable Energy, 2020, 157: 1222-1232. |
[26] | DEMAIN C, JOURNÉE M, BERTRAND C. Evaluation of different models to estimate the global solar radiation on inclined surfaces[J]. Renewable Energy, 2013, 50: 710-721. |
[1] | LIU Juncheng, TAN Yong, ZHANG Shengjie. Multi-Step Prediction of Excavation Deformation of Subway Station Based on Intelligent Algorithm [J]. Journal of Shanghai Jiao Tong University, 2024, 58(7): 1108-1117. |
[2] | ZHANG Guodong, LIU Kai, PU Haitao, YAO Fuqiang, ZHANG Shuaishuai. Identification of Inrush Current and Fault Current Based on Long Short-Term Memory Neural Network [J]. Journal of Shanghai Jiao Tong University, 2024, 58(5): 730-738. |
[3] | ZHANG Xiaotian1(张啸天), HE Defeng1* (何德峰), LIAO Fei2 (廖飞). Iterative Model Predictive Control for Automatic Carrier Landing of Carrier-Based Aircrafts Under Complex Surroundings and Constraints [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 712-724. |
[4] | HE Zhizhuo, ZHANG Ying, ZHENG Gang, ZHENG Fang, HUANG Wandi, ZHANG Shenxi, CHENG Haozhong. Interval Prediction Technology of Photovoltaic Power Based on Parameter Optimization of Extreme Learning Machine [J]. Journal of Shanghai Jiao Tong University, 2024, 58(3): 285-294. |
[5] | ZHAN Ke, ZHU Renchuan. A CNN-LSTM Ship Motion Extreme Value Prediction Model [J]. Journal of Shanghai Jiao Tong University, 2023, 57(8): 963-971. |
[6] | SHANG Fancheng, LI Chuanqing, ZHAN Ke, ZHU Renchuan. Application of Improved LSTM Neural Network in Time-Series Prediction of Extreme Short-Term Wave [J]. Journal of Shanghai Jiao Tong University, 2023, 57(6): 659-665. |
[7] | ZHANG Bo(张博),LI Keqing (李克庆),HU Yafei(胡亚飞),JI Kun(吉坤),HAN Bin*(韩斌). Prediction of Backfill Strength Based on Support Vector Regression Improved by Grey Wolf Optimization [J]. J Shanghai Jiaotong Univ Sci, 2023, 28(5): 686-694. |
[8] | LI Yan, XIAO Longfei, WEI Handi, KOU Yufeng. Wave Run-Up Prediction of Semi-Submersible Platforms Based on Long Short-Term Memory Network [J]. Journal of Shanghai Jiao Tong University, 2023, 57(2): 161-167. |
[9] | LIU Yixun, LIU Zhihao, GAO Qinhe, HUANG Tong, MA Dong. Vertical Force Estimation of Heavy-Loaded Radial Tire Based on Circumferential Strain Analysis [J]. Journal of Shanghai Jiao Tong University, 2023, 57(10): 1273-1281. |
[10] | ZHU Chenghao, WANG Han, SUN Guoqi, WEI Xiaobin, WANG Fuwen, CAI Xu. An Identification Method for DC-Link Capacitor Capacitance of Grid Connected Inverter [J]. Journal of Shanghai Jiao Tong University, 2022, 56(6): 693-700. |
[11] | ZHAO Yong, SU Dan. Rogue Wave Prediction Based on Four Combined Long Short-Term Memory Neural Network Models [J]. Journal of Shanghai Jiao Tong University, 2022, 56(4): 516-522. |
[12] | XU Hongdong, GAO Haibo, XU Xiaobin, LIN Zhiguo, SHENG Chenxing. State of Health Estimation of Lithium-ion Battery Using a CS-SVR Model Based on Evidence Reasoning Rule [J]. Journal of Shanghai Jiao Tong University, 2022, 56(4): 413-421. |
[13] | JIANG Haoyu, WANG Peilun, GE Quanbo, XU Jinqiang, LUO Peng, YAO Gang. A Sensing Method Based of Floating Photovoltaic Grids to Sudden Changes in Marine Weather [J]. Journal of Shanghai Jiao Tong University, 2022, 56(12): 1584-1597. |
[14] | WU Guangli, GUO Zhenzhou, LI Leiting, WANG Chengxiang. Video Abnormal Detection Combining FCN with LSTM [J]. Journal of Shanghai Jiao Tong University, 2021, 55(5): 607-614. |
[15] | ZHANG Songlin, MA Dongliang, WANG Deyu. Method for Plate Crack Damage Detection Based on Long Short-Term Memory Neural Network [J]. Journal of Shanghai Jiao Tong University, 2021, 55(5): 527-535. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||