[1] |
朱仁传, 缪国平. 船舶在波浪上的运动理论[M]. 上海: 上海交通大学出版社, 2019: 179-186.
|
|
ZHU Renchuan, MIAO Guoping. The theory of ship motion in waves[M]. Shanghai: Shanghai Jiao Tong University Press, 2019: 179-186.
|
[2] |
刘煜城. 基于深度学习的船舶运动极短期预报方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2019.
|
|
LIU Yucheng. Research on short-term forecasting method of ship motion based on deep learning[D]. Harbin:Harbin Engineering University, 2019.
|
[3] |
YUMORI I. Real time prediction of ship response to ocean waves using time series analysis[C]// Oceans. Boston,USA: IEEE, 2010: 1082-1089.
|
[4] |
GREFF K, SRIVASTAVA R K, KOUTNIK J, et al. LSTM: A search space odyssey[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(10): 2222-2232.
doi: 10.1109/TNNLS.2016.2582924
pmid: 27411231
|
[5] |
DUAN W Y, HAN Y, HUANG L M, et al. A hybrid EMD-SVR model for the short-term prediction of significant wave height[J]. Ocean Engineering, 2016, 124: 54-73.
doi: 10.1016/j.oceaneng.2016.05.049
URL
|
[6] |
LI G Y, KAWAN B, WANG H, et al. Neural-network-based modelling and analysis for time series prediction of ship motion[J]. Ship Technology Research, 2017, 64(1): 30-39.
doi: 10.1080/09377255.2017.1309786
URL
|
[7] |
张彪, 彭秀艳, 高杰. 基于ELM-EMD-LSTM组合模型的船舶运动姿态预测[J]. 船舶力学, 2020, 24(11): 1413-1421.
|
|
ZHANG Biao, PENG Xiuyan, GAO Jie. Ship motion attitude prediction based on ELM-EMD-LSTM integrated model[J]. Journal of Ship Mechanics, 2020, 24(11): 1413-1421.
|
[8] |
张钹, 朱军, 苏航. 迈向第三代人工智能[J]. 中国科学: 信息科学, 2020, 50(9): 1281-1302.
|
|
ZHANG Bo, ZHU Jun, SU Hang. Toward the third generation of artificial intelligence[J]. Scientia Sinica (Informationis), 2020, 50(9): 1281-1302.
|
[9] |
邱锡鹏. 神经网络与深度学习[M]. 北京: 机械工业出版社, 2020: 129-145, 180-186.
|
|
QIU Xipeng. Neural networks and deep learning[M]. Beijing: China Machine Press, 2020: 129-145, 180-186.
|
[10] |
王坤峰, 苟超, 段艳杰, 等. 生成式对抗网络GAN的研究进展与展望[J]. 自动化学报, 2017, 43(3): 321-332.
|
|
WANG Kunfeng, GOU Chao, DUAN Yanjie, et al. Generative adversarial networks: The state of the art and beyond[J]. Acta Automatica Sinica, 2017, 43(3): 321-332.
|
[11] |
CRESWELL A, WHITE T, DUMOULIN V, et al. Generative adversarial networks: An overview[J]. IEEE Signal Processing Magazine, 2018, 35(1): 53-65.
doi: 10.1109/MSP.2017.2765202
URL
|
[12] |
TZENG E, HOFFMAN J, SAENKO K, et al. Adversarial discriminative domain adaptation[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE, 2017: 2962-2971.
|
[13] |
何新林, 戚宗锋, 李建勋. 基于隐变量后验生成对抗网络的不平衡学习[J]. 上海交通大学学报, 2021, 55(5): 557-565.
|
|
HE Xinlin, QI Zongfeng, LI Jianxun. Unbalanced learning of generative adversarial network based on latent posterior[J]. Journal of Shanghai Jiao Tong University, 2021, 55(5): 557-565.
|
[14] |
TUKEY C J W. An algorithm for the machine calculation of complex Fourier series[J]. Mathematics of Computation, 1965, 19(90): 297-301.
doi: 10.1090/mcom/1965-19-090
URL
|
[15] |
于宁莉, 易东云, 涂先勤. 时间序列中自相关与偏相关函数分析[J]. 数学理论与应用, 2007, 27(1): 54-57.
|
|
YU Ningli, YI Dongyun, TU Xianqin. Analyze auto-correlations and partial-correlations function in time series[J]. Mathematical Theory and Applications, 2007, 27(1): 54-57.
|