[1] LE-KHAC N A, JACOBS D, NIJHOFF J, et al. Smart vehicle forensics: Challenges and case study [J]. Future Generation Computer Systems, 2020, 109: 500-510.
[2] CHECKOWAY S, MCCOY D, KANTOR B, et al.Comprehensive experimental analyses of automotive attack surfaces [C]//20th USENIX Security Symposium. San Francisco: USENIX, 2011: 447-462.
[3] HAN K, DIVYA POTLURI S, SHIN K G. On authentication in a connected vehicle: Secure integration of mobile devices with vehicular networks [C]//2013 ACM/IEEE International Conference on Cyber-Physical Systems. Philadelphia: IEEE, 2013:160-169.
[4] FOSTER I, PRUDHOMME A, KOSCHER K, et al.Fast and vulnerable: A story of telematic failures[C]//9th USENIX Conference on Offensive Technologies. Washington: USENIX, 2015: 1-9.
[5] WANG E, XU W, SASTRY S, et al. Hardware modulebased message authentication in intra-vehicle networks[C]//2017 ACM/IEEE 8th International Conference on Cyber-Physical Systems. Pittsburgh: IEEE, 2017:207-216.
[6] MUTER M, ASAJ N. Entropy-based anomaly detection for in-vehicle networks [C]//2011 IEEE Intelligent Vehicles Symposium. Baden-Baden: IEEE, 2011:1110-1115.
[7] LEE H, JEONG S H, KIM H K. OTIDS: A novel intrusion detection system for in-vehicle network by using remote frame [C]//2017 15th Annual Conferenceon Privacy, Security and Trust. Calgary: IEEE, 2017:57-66.
[8] ASHFAQ R A R, WANG X Z, HUANG J Z, et al.Fuzziness based semi-supervised learning approach for intrusion detection system [J]. Information Sciences,2017, 378: 484-497.
[9] IDHAMMAD M, AFDEL K, BELOUCH M. Semisupervised machine learning approach for DDoS detection [J]. Applied Intelligence, 2018, 48(10): 3193-3208.
[10] PAZUL K. Controller area network (CAN) basics[EB/OL]. [2022-05-24]. https://cika.com/soporte/Information/Microchip/AnalogInterface/CAN/AppNotes/AN713(DS00713a).pdf.
[11] YU F, LI D F, CROLLA D A. Integrated Vehicle Dynamics Control — state-of-the art review [C]//2008 IEEE Vehicle Power and Propulsion Conference.Harbin: IEEE, 2008: 1-6.
[12] KOSCHER K, CZESKIS A, ROESNER F, et al. Experimental security analysis of a modern automobile [C]//2010 IEEE Symposium on Security and Privacy.Oakland: IEEE, 2010: 447-462.
[13] HOPPE T, KILTZ S, DITTMANN J. Security threats to automotive CAN networks— Practical examples and selected short-term countermeasures [J]. Reliability Engineering & System Safety, 2011, 96(1): 11-25.
[14] THEISSLER A. Anomaly detection in recordings from in-vehicle networks [M]//Big data applications and principes. Madrid: Universidad Politecnica de Madrid,2014: 23-38.
[15] KANG M J, KANG J W. Intrusion detection system using deep neural network for in-vehicle network security [J]. PLoS ONE, 2016, 11(6): e0155781.
[16] YU Y, SI X S, HU C H, et al. A review of recurrent neural networks: LSTM cells and network architectures [J]. Neural Computation, 2019, 31(7): 1235-1270.
[17] ALKHATIB N, GHAUCH H, DANGER J L.SOME/IP intrusion detection using deep learningbased sequential models in automotive Ethernet networks [C]//2021 IEEE 12th Annual Information Technology, Electronics and Mobile Communication Conference. Vancouver: IEEE, 2021: 954-962.
[18] KHAN Z, CHOWDHURY M, ISLAM M, et al. Long short-term memory neural networks for false information attack detection in softwaredefined in-vehicle network [DB/OL]. (2019-06-24).https://arxiv.org/abs/1906.10203.
[19] HOSSAIN M D, INOUE H, OCHIAI H, et al. LSTMbased intrusion detection system for in-vehicle can bus communications [J]. IEEE Access, 2020, 8: 185489-185502.
[20] SEGER C. An investigation of categorical variable encoding techniques in machine learning: Binary versus one-hot and feature hashing [R]. Stockholm: KTH Royal Institute of Technology, 2018.
[21] HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets [J]. Neural Computation, 2006, 18(7): 1527-1554.
[22] HE K M, ZHANG X Y, REN S Q, et al. Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification [C]//2015 IEEE International Conference on Computer Vision. Santiago:IEEE, 2015: 1026-1034.
[23] HOCHREITER S, SCHMIDHUBER J. Long shortterm memory [J]. Neural Computation, 1997, 9(8):1735-1780.
|