[1] |
SAAD Z, NUR HAZIRAH A J, SUZIANA A, et al. Short-term load forecasting of 415 V, 11 kV and 33 kV electrical systems using MLP network[C]//2017 International Conference on Robotics, Automation and Sciences. Melaka, Malaysia: IEEE, 2017: 1-5.
|
[2] |
HE T, DONG Z Y, MENG K, et al. Accelerating Multi-layer Perceptron based short term demand forecasting using Graphics Processing Units[C]//2009 Transmission & Distribution Conference & Exposition:Asia and Pacific. Seoul, Korea: IEEE, 2009: 1-4.
|
[3] |
TSAKOUMIS A C, VLADOV S S, MLADENOV V M. Electric load forecasting with multilayer perceptron and Elman neural network[C]//6th Seminar on Neural Network Applications in Electrical Engineering. Belgrade, Yugoslavia: IEEE, 2002: 87-90.
|
[4] |
DRAGOMIR O E, DRAGOMIR F, BREZEANU I, et al. MLP neural network as load forecasting tool on short-term horizon[C]//2011 19th Mediterranean Conference on Control & Automation. Corfu, Greece: IEEE, 2011: 1265-1270.
|
[5] |
KONG W C, DONG Z Y, JIA Y W, et al. Short-term residential load forecasting based on LSTM recurrent neural network[J]. IEEE Transactions on Smart Grid, 2019, 10(1): 841-851.
|
[6] |
RAFI S H, Al MASOOD N, DEEBA S R, et al. A short-term load forecasting method using integrated CNN and LSTM network[J]. IEEE Access, 2021, 9: 32436-32448.
|
[7] |
TAN M, YUAN S P, LI S H, et al. Ultra-short-term industrial power demand forecasting using LSTM based hybrid ensemble learning[J]. IEEE Transactions on Power Systems, 2020, 35(4): 2937-2948.
|
[8] |
LI C J, DONG Z Y, DING L, et al. Interpretable memristive LSTM network design for probabilistic residential load forecasting[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69(6): 2297-2310.
|
[9] |
SHANG C, GAO J W, LIU H B, et al. Short-term load forecasting based on PSO-KFCM daily load curve clustering and CNN-LSTM model[J]. IEEE Access, 2021, 9: 50344-50357.
|
[10] |
AGENG D, HUANG C Y, CHENG R G. A short-term household load forecasting framework using LSTM and data preparation[J]. IEEE Access, 9: 167911-167919.
|
[11] |
LIAO Z F, PAN H H, FAN X P, et al. Multiple wavelet convolutional neural network for short-term load forecasting[J]. IEEE Internet of Things Journal, 2021, 8(12): 9730-9739.
|
[12] |
CHEN Y, LUH P B, GUAN C, et al. Short-term load forecasting: Similar day-based wavelet neural networks[J]. IEEE Transactions on Power Systems, 2010, 25(1): 322-330.
|
[13] |
GUAN C, LUH P B, COOLBETH M A, et al. Very short-term load forecasting: Multilevel wavelet neural networks with data pre-filtering[C]//2009 IEEE Power & Energy Society General Meeting. Calgary, Canada: IEEE, 2009: 1-8.
|
[14] |
BASHIR Z, EL-HAWARY M E. Short term load forecasting by using wavelet neural networks[C]//2000 Canadian Conference on Electrical and Computer Engineering. Conference Proceedings. Navigating to a New Era (Cat. No.00TH8492). Halifax, Canada: IEEE, 2000: 163-166.
|
[15] |
CHEN X, DONG Z Y, MENG K, et al. Electricity price forecasting with extreme learning machine and bootstrapping[J]. IEEE Transactions on Power Systems, 2012, 27(4): 2055-2062.
|
[16] |
RAFIEI M, NIKNAM T, AGHAEI J, et al. Probabilistic load forecasting using an improved wavelet neural network trained by generalized extreme learning machine[J]. IEEE Transactions on Smart Grid, 2018, 9(6): 6961-6971.
|
[17] |
WANG L, ZHANG Z J, CHEN J Q. Short-term electricity price forecasting with stacked denoising autoencoders[J]. IEEE Transactions on Power Systems, 2017, 32(4): 2673-2681.
|
[18] |
SUN W, ZHANG Y X, LI F T. The neural network model based on PSO for short-term load forecasting[C]//2006 International Conference on Machine Learning and Cybernetics. Dalian, China: IEEE, 2006: 3069-3072.
|
[19] |
ZHANG C Q, LIN M, TANG M Y. BP neural network optimized with PSO algorithm for daily load forecasting[C]//2008 International Conference on Information Management, Innovation Management and Industrial Engineering. Taipei, China: IEEE, 2008: 82-85.
|
[20] |
XU X B, LIU W X, ZHOU X, et al. Short-term load forecasting for the electric bus station based on GRA-DE-SVR[C]//2014 IEEE Innovative Smart Grid Technologies-Asia. Kuala Lumpur, Malaysia: IEEE, 2014: 388-393.
|