Journal of Shanghai Jiao Tong University ›› 2024, Vol. 58 ›› Issue (6): 826-835.doi: 10.16183/j.cnki.jsjtu.2022.473
• New Type Power System and the Integrated Energy • Previous Articles Next Articles
JIANG Biao1, LIU Jia1(), ZENG Pingliang1, TANG Zao1, LI Yalou2
Received:
2022-11-25
Revised:
2023-03-13
Accepted:
2023-03-14
Online:
2024-06-28
Published:
2024-07-05
CLC Number:
JIANG Biao, LIU Jia, ZENG Pingliang, TANG Zao, LI Yalou. Two-Stage Robust Planning for Transmission Network Considering Adaptive Decision of Carbon Trading Volume[J]. Journal of Shanghai Jiao Tong University, 2024, 58(6): 826-835.
[1] | 习近平. 在第七十五届联合国大会一般性辩论上的讲话[EB/OL]. (2020-09-22)[2022-11-22]. https://baijiahao.baidu.com/s?id=1678546728556033497&wfr=spider&for=pc. |
XI Jinping. Speech at the general debate of the 75th session of United Nations General Assembly[EB/OL]. (2020-09-22)[2022-11-22]. https://baijiahao.baidu.com/s?id=1678546728556033497&wfr=spider&for=pc. | |
[2] | 康重庆, 杜尔顺, 李姚旺, 等. 新型电力系统的“碳视角”: 科学问题与研究框架[J]. 电网技术, 2022, 46(3): 821-833. |
KANG Chongqing, DU Ershun, LI Yaowang, et al. Key scientific problems and research framework for carbon perspective research of new power systems[J]. Power System Technology, 2022, 46(3): 821-833. | |
[3] | DEHGHAN S, AMJADY N. Robust transmission and energy storage expansion planning in wind farm-integrated power systems considering transmission switching[J]. IEEE Transactions on Sustainable Energy, 2016, 7(2): 765-774. |
[4] | 樊金柱, 李华强, 刘万宇, 等. 考虑网源协同的输电网适应性扩展规划[J]. 电网技术, 2019, 43(9): 3360-3367. |
FAN Jinzhu, LI Huaqiang, LIU Wanyu, et al. Adaptability expansion planning of transmission grid considering grid-source coordination[J]. Power System Technology, 2019, 43(9): 3360-3367. | |
[5] | ZHANG X, CONEJO A J. Robust transmission expansion planning representing long-and short-term uncertainty[J]. IEEE Transactions on Power Systems, 2018, 33(2):1329-1338. |
[6] | LIU J, TANG Z, ZENG P P, et al. Co-optimization of distribution system operation and transmission system planning: A decentralized stochastic solution[J]. Energy Reports, 2022, 8: 501-509. |
[7] | ZHONG H W, ZHANG G L, TAN Z, et al. Hierarchical collaborative expansion planning for transmission and distribution networks considering transmission cost allocation[J]. Applied Energy, 2022, 307: 118147. |
[8] | LIU J, TANG Z, ZENG P, et al. Distributed adaptive expansion approach for transmission and distribution networks incorporating source-contingency-load uncertainties[J]. International Journal of Electrical Power & Energy Systems, 2022, 136: 107711. |
[9] |
李玲芳, 陈占鹏, 胡炎, 等. 基于灵活性和经济性的可再生能源电力系统扩展规划[J]. 上海交通大学学报, 2021, 55(7): 791-801.
doi: 10.16183/j.cnki.jsjtu.2020.024 |
LI Lingfang, CHEN Zhanpeng, HU Yan, et al. Expansion planning of renewable energy power system considering flexibility and economy[J]. Journal of Shanghai Jiao Tong University, 2021, 55(7): 791-801. | |
[10] | WU Y W, LOU S H, LU S Y. A model for power system interconnection planning under low-carbon economy with CO2 emission constraints[J]. IEEE Transactions on Sustainable Energy, 2011, 2(3): 205-214. |
[11] | ZHONG J C, QI Y L, HAO X, et al. Power generation planning optimization model considering carbon emission[C]//2022 IEEE/IAS Industrial and Commercial Power System Asia. Shanghai, China: IEEE, 2022, 1050-1054. |
[12] | WANG Z S, ZHAO T Q, XIA X, et al. Low carbon planning of power system based on stepped carbon tax considering thermal power support in the context of 3060[C]//2022 7th Asia Conference on Power and Electrical Engineering. Hangzhou, China: IEEE, 2022: 28-34. |
[13] | HU Y, DING T, BIE Z H, et al. Integrated generation and transmission expansion planning with carbon capture operating constraints[C]//2016 IEEE Power and Energy Society General Meeting. Boston, USA: IEEE, 2016: 1-5. |
[14] | 周任军, 孙洪, 唐夏菲, 等. 双碳量约束下风电-碳捕集虚拟电厂低碳经济调度[J]. 中国电机工程学报, 2018, 38(6): 1675-1683. |
ZHOU Renjun, SUN Hong, TANG Xiafei, et al. Low-carbon economic dispatch based on virtual power plant made up of carbon capture unit and wind power under double carbon constraint[J]. Proceedings of the CSEE, 2018, 38(6): 1675-1683. | |
[15] | ZHANG R F, YAN K F, LI G Q, et al. Privacy-preserving decentralized power system economic dispatch considering carbon capture power plants and carbon emission trading scheme via over-relaxed ADMM[J]. International Journal of Electrical Power & Energy Systems, 2020, 121: 106094. |
[16] | LU S Y, ZHOU B R, YAO W F, et al. Transmission network expansion planning towards a low-carbon economy with fuzzy modeling of wind generation[C]//2018 IEEE Power & Energy Society General Meeting. Portland, Oregon, USA: IEEE, 2018: 1-5. |
[17] | 吕齐, 李明轩, 魏韡, 等. 基于参数规划的含储能和风电电力系统低碳经济调度[J]. 电力自动化设备, 2023, 43(7): 12-18. |
LÜ Qi, LI Mingxuan, WEI Wei, et al. Low-carbon economic dispatch of power system with energy storage and wind power based on parametric program-ming[J]. Electric Power Automation Equipment, 2023, 43(7): 12-18. | |
[18] | 刘哲远, 邢海军, 程浩忠, 等. 考虑碳排放流及需求响应的综合能源系统双层优化调度[J]. 高电压技术, 2023, 49(1): 169-178. |
LIU Zheyuan, XING Haijun, CHENG Haozhong, et al. Bi-level optimal scheduling of integrated energy system considering carbon emission flow and demand response[J]. High Voltage Engineering, 2023, 49(1): 169-178. | |
[19] |
陈文溆乐, 向月, 彭光博, 等. “双碳”目标下电力系统供给侧形态发展系统动力学建模与分析[J]. 上海交通大学学报, 2021, 55(12): 1567-1576.
doi: 10.16183/j.cnki.jsjtu.2021.294 |
CHEN Wenxule, XIANG Yue, PENG Guangbo, et al. System dynamic modeling and analysis of power system supply side morphological development with dual carbon targets[J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1567-1576. | |
[20] | YE H X, LI Z Y. Robust security-constrained unit commitment and dispatch with recourse cost requirement[J]. IEEE Transactions on Power Systems, 2016, 31(5): 3527-3536. |
[21] | 郭尊, 李庚银, 周明. 计及碳交易机制的电-气联合系统快速动态鲁棒优化运行[J]. 电网技术, 2020, 44(4): 1220-1228. |
GUO Zun, LI Gengyin, ZHOU Ming. Fast and dynamic robust optimization of integrated electricity-gas system operation with carbon tradin[J]. Power System Technology, 2020, 44(4): 1220-1228. | |
[22] |
赵永斌, 丛建辉, 杨军, 等. 中国碳市场配额分配方法探索[J]. 资源科学, 2019, 41(5): 872-883.
doi: 10.18402/resci.2019.05.05 |
ZHAO Yongbin, CONG Jianhui, YANG Jun, et al. An innovative allowance allocation method in China’s unified national emissions trading scheme[J]. Resources Science, 2019, 41(5): 872-883.
doi: 10.18402/resci.2019.05.05 |
|
[23] | 中华人民共和国生态环境部. 2019—2020年全国碳排放权交易配额总量设定与分配实施方案(发电行业)[EB/OL]. (2020-12-30)[2022-11-22]. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk03/202012/W020201230736907121045.pdf. |
Ministry of Ecology and Environment of the People’s Republic of China. Implementation plan for total quota setting and allocation of national carbon emission trading in 2019—2020 (power generation industry)[EB/OL]. (2020-12-30)[2022-11-22]. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk03/202012/W020201230736907121045.pdf. | |
[24] | ZENG B, ZHAO L. Solving two-stage robust optimization problems using a column-and-constraint generation method[J]. Operations Research Letters, 2013, 41(5): 457-461. |
[25] | GRIGG C, WONG P, ALBRECHT P, et al. The IEEE reliability test system-1996.A report prepared by the Reliability Test System Task Force of the Application of Probability Methods Subcommittee[J]. IEEE Transactions on Power Systems, 1999, 14(3): 1010-1020. |
[26] | LIU J, CHENG H Z, ZENG P L, et al. Decentralized stochastic optimization based planning of integrated transmission and distribution networks with distributed generation penetration[J]. Applied Energy, 2018, 220: 800-813. |
[1] | LIU Changxi, QI Guomin, WANG Jicheng, LI Tianye, YANG Jian, LEI Xia. Design of Two-Stage Electricity Spot Market Model Considering Carbon Emission Trading [J]. Journal of Shanghai Jiao Tong University, 2025, 59(3): 342-353. |
[2] | LI Jianlin, ZHANG Zedong, LIANG Ce, ZENG Fei. Multi-Objective Robustness of Integrated Energy System Considering Source-Load Uncertainty [J]. Journal of Shanghai Jiao Tong University, 2025, 59(2): 175-185. |
[3] | TIAN Shuxin, HAN Xue, FU Yang, SU Xiangjing, LI Zhenkun. Two-Stage Robust Expansion Planning of Transmission Network Considering Uncertainty of Offshore Wind Power [J]. Journal of Shanghai Jiao Tong University, 2024, 58(9): 1400-1409. |
[4] | MI Yang, FU Qixin, ZHAO Haihui, MA Siyuan, WANG Yufei. Robust Optimal Scheduling of Micro Energy Grid Considering Multi-Interval Uncertainty Set of Source-Load and Integrated Demand Response [J]. Journal of Shanghai Jiao Tong University, 2024, 58(9): 1323-1333. |
[5] | LIN Sen, WEN Shuli, ZHU Miao, DAI Qun, YAN Lun, ZHAO Yao, YE Huili. Optimal Allocation of Electric-Thermal Hybrid Energy Storage for Seaport Integrated Energy System Considering Carbon Trading Mechanism [J]. Journal of Shanghai Jiao Tong University, 2024, 58(9): 1344-1356. |
[6] | ZHANG Xianwen, YIN Gaowen, SHEN Feifan, HUANG Sheng, WEI Juan. Bidding Strategies for Energy Storage Participation in Electricity Market Considering Uncertainty of Wind Power and Carbon Trading [J]. Journal of Shanghai Jiao Tong University, 2024, 58(12): 1868-1880. |
[7] | MI Yang, LI Haipeng, CHEN Boyang, PENG Jianwei, WEI Wei, YAO Yan. Two-Stage Optimal Configuration of Microgrid Based on Fuzzy Scene Clustering [J]. Journal of Shanghai Jiao Tong University, 2023, 57(9): 1137-1145. |
[8] | JIANG Enyu, CHEN Yu, SHI Zhengjing, WU Zhecheng, LIN Shunfu, LI Dongdong. A Microgrid Energy Management Strategy Considering Carbon Quota Guided Demand Response [J]. Journal of Shanghai Jiao Tong University, 2023, 57(9): 1126-1136. |
[9] | CHEN Yi, WANG Han, XU Xiaoyuan, HU Youlin, YAN Zheng, ZENG Dan, FENG Kai. A Two-Stage Distributionally Robust Economic Dispatch Model Under the Coordination of Inter-Provincial and Intra-Provincial Bi-Level Market [J]. Journal of Shanghai Jiao Tong University, 2023, 57(9): 1114-1125. |
[10] | PENG Sijia, XING Haijun, CHENG Mingyang. Low Carbon Economic Dispatch of Virtual Power Plants Considering Ladder-Type Carbon Trading in Multiple Uncertainties [J]. Journal of Shanghai Jiao Tong University, 2023, 57(12): 1571-1582. |
[11] | HUANG Wandi, ZHANG Shenxi, CHENG Haozhong, CHEN Dan, ZHAI Xiaomeng, WU Shuang. Robust Optimization of Power Grid Investment Decision-Making Considering Regional Development Stage Uncertainties [J]. Journal of Shanghai Jiao Tong University, 2023, 57(11): 1455-1464. |
[12] | ZHOU Shichao, LIU Xiaolin, XIONG Zhan, WANG Xu, JIANG Chuanwen, ZHANG Shenxi. Line Hardening and Energy Storage System Configuration Strategies for Resilience Enhancement of a Hybrid AC-DC Distribution System [J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1619-1630. |
[13] | LIU Mingtao, XIE Jun, ZHANG Qiuyan, BAO Changyu, CHANG Yifan, DUAN Jianan, SHI Xionghua, BAO Yong. Short-Term Production Simulation of Power System Containing Wind Power Under Carbon Trading Environment [J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1598-1607. |
[14] | LÜ Xiangmei, LIU Tianqi, LIU Xuan, HE Chuan, NAN Lu, ZENG Hong. Low-Carbon Economic Dispatch of Multi-Energy Park Considering High Proportion of Renewable Energy [J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1586-1597. |
[15] | LIU Yang,CHEN Lu. A Robust Optimization Approach for the Routing Problem of Road Network Daily Maintenance [J]. Journal of Shanghai Jiaotong University, 2018, 52(4): 388-394. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 204
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 1533
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||