Journal of Shanghai Jiao Tong University ›› 2025, Vol. 59 ›› Issue (2): 175-185.doi: 10.16183/j.cnki.jsjtu.2023.238
• New Type Power System and the Integrated Energy • Previous Articles Next Articles
LI Jianlin1(), ZHANG Zedong1, LIANG Ce1, ZENG Fei2
Received:
2023-06-12
Revised:
2023-08-01
Accepted:
2023-09-01
Online:
2025-02-28
Published:
2025-03-11
CLC Number:
LI Jianlin, ZHANG Zedong, LIANG Ce, ZENG Fei. Multi-Objective Robustness of Integrated Energy System Considering Source-Load Uncertainty[J]. Journal of Shanghai Jiao Tong University, 2025, 59(2): 175-185.
Tab.2
Energy storage equipment parameters of system
储能 类型 | 自损 耗率/% | 最大充 能速率 | 最大放 能速率 | 充能 效率/% | 放能 效率/% | SOC 最大值/% | SOC 最小值/% | 初始 投资费用 | 折现 时间/a | 运行 维护费用 |
---|---|---|---|---|---|---|---|---|---|---|
电储能 | 0.1 | 0.32 | 0.32 | 97 | 98 | 95 | 10 | 1 600元/kW | 12 | 0.035元/(kW·h) |
热储能 | 0.6 | 0.4 | 0.4 | 94 | 95 | 95 | 10 | 450元/kW | 20 | 0.028元/kW |
氢储能 | 0.1 | 0.45 | 0.45 | 98 | 99 | 95 | 10 | 313元/m3 | 18 | 0.056元/m3 |
Tab.5
Installed capacity of system equipment of different schemes
方案 | 光伏电池/kW | 风电机组/kW | 燃料电池/kW | 电解槽/m3 | 电锅炉/kW | 电储能/ (kW·h) | 热储能/ (kW·h) | 氢储能/ m3 |
---|---|---|---|---|---|---|---|---|
S1 | 59 800 | 70 230 | 0 | 5 212 | 23 950 | 59 500 | 45 500 | 32 620 |
S2 | 62 500 | 70 650 | 0 | 5 320 | 24 250 | 61 220 | 45 000 | 34 620 |
S3 | 69 800 | 90 230 | 7 002 | 2 025 | 22 850 | 62 600 | 51 000 | 39 800 |
S4 | 70 000 | 90 740 | 7 017 | 2 041 | 21 060 | 62 500 | 50 000 | 40 000 |
[1] | 李建林, 张则栋, 李光辉, 等. 基于模型层级分析的质子交换膜电解槽建模研究进展[J]. 高电压技术, 2023, 49(3): 1105-1117. |
LI Jianlin, ZHANG Zedong, LI Guanghui, et al. Research on modeling of proton exchange membrane electrolyzer based on model hierarchical analysis[J]. High Voltage Technology, 2023, 49(3): 1105-1117. | |
[2] | 杨龙, 张沈习, 程浩忠, 等. 区域低碳综合能源系统规划关键技术与挑战[J]. 电网技术, 2022, 46(9): 3290-3304. |
YANG Long, ZHANG Shenxi, CHENG Haozhong, et al. Regional low-carbon integrated energy system planning: Key technologies and challenges[J]. Power System Technology, 2022, 46 (9): 3290-3304. | |
[3] | 张笑演, 熊厚博, 王楚通, 等. 基于最优出力区间和碳交易的园区综合能源系统灵活经济调度[J]. 电力系统自动化, 2022, 46(16): 72-83. |
ZHANG Xiaoyan, XIONG Houbo, WANG Chutong, et al. Flexible economic dispatch of park integrated energy system based on optimal output interval and carbon trading[J]. Automation of Electric Power Systems, 2022, 46(16): 72-83. | |
[4] | 李建林, 李光辉, 马速良, 等. 碳中和目标下制氢关键技术进展及发展前景综述[J]. 热力发电, 2021, 50(6): 1-8. |
LI Jianlin, LI Guanghui, MA Suliang, et al. Review of key technologies for hydrogen production under carbon neutrality and development prospects[J]. Thermal Power Generation, 2021, 50(6): 1-8. | |
[5] |
李建林, 梁忠豪, 李光辉, 等. 太阳能制氢关键技术研究[J]. 太阳能学报, 2022, 43(3): 2-11.
doi: 10.19912/j.0254-0096.tynxb.2022-0037 |
LI Jianlin, LIANG Zhonghao, LI Guanghui, et al. Research on key technologies of solar hydrogen production[J]. Acta Energiae Solaris Sinica, 2022, 43(3): 2-11.
doi: 10.19912/j.0254-0096.tynxb.2022-0037 |
|
[6] | TAN J S, WU Q W, HU Q R, et al. Adaptive robust energy and reserve co-optimization of integrated electricity and heating system considering wind uncertainty[J]. Applied Energy, 2020, 11(260): 114230-114243. |
[7] | BAZMOHAMMADI N, TAHSIRI A, ANVARI-MOGHADDAM A, et al. A hierarchical energy management strategy for interconnected microgrids considering uncertainty[J]. International Journal of Power and Energy Systems, 2019, 109(7): 597-608. |
[8] | 席俊烨, 童晓阳, 李智, 等. 考虑风电不确定性的交直流配电网低碳分布鲁棒优化调度[J]. 电力自动化设备, 2023, 43(11): 59-66. |
XI Junye, TONG Xiaoyang, LI Zhi, et al. Low-carbon distributionally robust optimal scheduling for AC/DC distribution network considering wind power uncertainty[J]. Electric Power Automation Equipment, 2023, 43(11): 59-66. | |
[9] | AHN H, RIM D, PAVLAK G S, et al. Uncertainty analysis of energy and economic performances of hybrid solar photovoltaic and combined cooling, heating, and power systems using a Monte-Carlo method[J]. Applied Energy, 2019, 255(12): 113753.1-113753.13. |
[10] | 刘一欣, 郭力, 王成山. 微电网两阶段鲁棒优化经济调度方法[J]. 中国电机工程学报, 2018, 38(14): 4013-4022. |
LIU Yixin, GUO Li, WANG Chengshan. Economic dispatch of microgrid based on two stage robust optimization[J]. Proceedings of the CSEE, 2018, 38(14): 4013-4022. | |
[11] | 司杨, 陈来军, 陈晓弢, 等. 基于分布鲁棒的风-氢混合系统氢储能容量优化配置[J]. 电力自动化设备, 2021, 41(10): 3-10. |
SI Yang, CHEN Laijun, CHEN Xiaotao, et al. Optimal capacity allocation of hydrogen energy storage in wind-hydrogen hybrid system based on distributionally robust[J]. Electric Power Automation Equipment, 2021, 41 (10): 3-10. | |
[12] |
孙毅, 谷家训, 郑顺林, 等. 考虑广义储能和LCA碳排放的综合能源系统低碳优化运行策略[J]. 上海交通大学学报, 2024, 58(5): 647-658.
doi: 10.16183/j.cnki.jsjtu.2022.350 |
SUN Yi, GU Jiaxun, ZHENG Shunlin, et al. Low-carbon optimal operation strategy of integrated energy system considering generalized energy storage and LCA carbon emissions[J]. Journal of Shanghai Jiao Tong University, 2024, 58(5): 647-658. | |
[13] |
范宏, 杨忠权, 夏世威. 考虑阶梯式碳交易机制的混氢天然气综合能源系统低碳经济运行[J]. 上海交通大学学报, 2024, 58(5): 624-635.
doi: 10.16183/j.cnki.jsjtu.2022.377 |
FAN Hong, YANG Zhongquan, XIA Shiwei. Low carbon economic operation of hydrogen enriched compressed natural gas integrated energy system considering step carbon trading mechanism[J]. Journal of Shanghai Jiao Tong University, 2024, 58(5): 624-635. | |
[14] | YU H, CHUNG C Y, WONG K P, et al. Probabilistic load flow evaluation with hybrid Latin hypercube sampling and Cholesky decomposition[J]. IEEE Transactions on Power Systems, 2009, 24(5): 661-667. |
[15] | ZENG B, ZHAO L. Solving two-stage robust optimization problems using a column-and-constraint generation method[J]. Operations Research Letters: A Journal of the Operations Research Society of America, 2013(5): 457-461. |
[1] | LI Bingjie, YUAN Xiaoyun, SHI Jing, XU Huachi, LUO Zixuan. Multi-Energy Flow Modeling and Optimization of Electric-Gas-Thermal Integrated Energy System [J]. Journal of Shanghai Jiao Tong University, 2024, 58(9): 1297-1308. |
[2] | LIN Sen, WEN Shuli, ZHU Miao, DAI Qun, YAN Lun, ZHAO Yao, YE Huili. Optimal Allocation of Electric-Thermal Hybrid Energy Storage for Seaport Integrated Energy System Considering Carbon Trading Mechanism [J]. Journal of Shanghai Jiao Tong University, 2024, 58(9): 1344-1356. |
[3] | MI Yang, FU Qixin, ZHAO Haihui, MA Siyuan, WANG Yufei. Robust Optimal Scheduling of Micro Energy Grid Considering Multi-Interval Uncertainty Set of Source-Load and Integrated Demand Response [J]. Journal of Shanghai Jiao Tong University, 2024, 58(9): 1323-1333. |
[4] | ZHOU Siyi, YANG Huanhong, HUANG Wentao, ZHOU Ze, JIAO Wei, YANG Zhenyu. Two-Stage Day-Ahead and Intra-Day Rolling Optimization Scheduling of Container Integrated Port Energy System [J]. Journal of Shanghai Jiao Tong University, 2024, 58(9): 1357-1369. |
[5] | SHANG Yanxin, QU Wenjie, REN Xuening, LU Hongbo, DU Wei, LI Li, WU Feng, CHEN Renjie. Research Progress in Power Materials and Technology for Aerospace [J]. Air & Space Defense, 2024, 7(6): 12-28. |
[6] | WANG Jinfeng, WANG Qi, REN Zhengmou, SUN Xiaochen, SUN Yi, ZHAO Yiyi. Energy Management Strategy of Integrated Electricity-Heat Energy System Based on Federated Reinforcement Learning [J]. Journal of Shanghai Jiao Tong University, 2024, 58(6): 904-915. |
[7] | FAN Hong, XING Mengqing, WANG Lankun, TIAN Shuxin. Multi-Time Scale Probabilistic Production Simulation of Wind-Solar Hydrogen Integrated Energy System Considering Hydrogen Storage [J]. Journal of Shanghai Jiao Tong University, 2024, 58(6): 881-892. |
[8] | FAN Hong, YANG Zhongquan, XIA Shiwei. Low Carbon Economic Operation of Hydrogen-Enriched Compressed Natural Gas Integrated Energy System Considering Step Carbon Trading Mechanism [J]. Journal of Shanghai Jiao Tong University, 2024, 58(5): 624-635. |
[9] | ZHANG Cheng, KUANG Yu, CHEN Wenxing, ZHENG Yang. Low Carbon Economy Optimization of Integrated Energy System Considering Electric Vehicle Charging Mode and Multi-Energy Coupling [J]. Journal of Shanghai Jiao Tong University, 2024, 58(5): 669-681. |
[10] | SUN Yi, GU Jiaxun, ZHENG Shunlin, LI Xiong, LU Chunguang, LIU Wei. Low-Carbon Optimal Operation Strategy of Integrated Energy System Considering Generalized Energy Storage and LCA Carbon Emission [J]. Journal of Shanghai Jiao Tong University, 2024, 58(5): 647-658. |
[11] | FU Wenxi, DOU Zhenlan, ZHANG Chunyan, WANG Lingling, JIANG Chuanwen, XIONG Zhan. Bi-Level Optimization Operation Method of Multi-H2-IES Considering Dynamic Carbon Emission Factors [J]. Journal of Shanghai Jiao Tong University, 2024, 58(5): 610-623. |
[12] | CHEN Minxue, QIU Diankai, PENG Linfa. Operation Parameters of Air-Cooled Fuel Cell Based on In-Situ Testing of Reaction State [J]. Journal of Shanghai Jiao Tong University, 2024, 58(3): 253-262. |
[13] | SU Yulin, LIAN Guan, ZHANG Dacheng. Equivalent Circuit Model-Based Prognostics for Micro Direct Methanol Fuel Cell Under Dynamic Operating Conditions [J]. Journal of Shanghai Jiao Tong University, 2024, 58(10): 1575-1584. |
[14] | LIU Bingwen, WU Xiong, CAO Binrui, MA Song, HE Wenwen. Joint Planning of Regional Integrated Energy System Based on Enhanced Benders Decomposition [J]. Journal of Shanghai Jiao Tong University, 2024, 58(10): 1513-1523. |
[15] | LI Yang, LIU Zhi, ZAI Xuerong, HUANG Xiang, CHEN Yan, CAO Yali, ZHANG Huaijing, FU Yubin. Effect of Sediment Porosity on Electrochemical Performance of Marine Sediment Microbial Fuel Cells and Analysis of Organic Matter Diffusion [J]. Journal of Shanghai Jiao Tong University, 2024, 58(10): 1567-1574. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 516
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 307
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||