[1] |
谭显东, 刘俊, 徐志成, 等. “双碳”目标下“十四五”电力供需形势[J]. 中国电力, 2021, 54(5):1-6.
|
|
TAN Xiandong, LIU Jun, XU Zhicheng, et al. Power supply and demand balance during the 14th five-year plan period under the goal of carbon emission peak and carbon neutrality[J]. Electric Power, 2021, 54(5):1-6.
|
[2] |
XIA C H, ZHANG M, CAO J. A hybrid application of soft computing methods with wavelet SVM and neural network to electric power load forecasting[J]. Journal of Electrical Systems and Information Technology, 2018, 5(3):681-696.
doi: 10.1016/j.jesit.2017.05.008
URL
|
[3] |
LI Y Y, HAN D, YAN Z. Long-term system load forecasting based on data-driven linear clustering method[J]. Journal of Modern Power Systems and Clean Energy, 2018, 6(2):306-316.
doi: 10.1007/s40565-017-0288-x
URL
|
[4] |
康重庆. 电力系统负荷预测[M]. 北京: 中国电力出版社, 2017.
|
|
KANG Chongqing. Power system load forecast[M]. Beijing: China Electric Power Press, 2017.
|
[5] |
崔和瑞, 彭旭. 基于ARIMAX模型的夏季短期电力负荷预测[J]. 电力系统保护与控制, 2015, 43(4):108-114.
|
|
CUI Herui, PENG Xu. Summer short-term load forecasting based on ARIMAX model[J]. Power System Protection and Control, 2015, 43(4):108-114.
|
[6] |
谢开, 汪峰, 于尔铿, 等. 应用Kalman滤波方法的超短期负荷预报[J]. 中国电机工程学报, 1996, 16(4):245-249.
|
|
XIE Kai, WANG Feng, YU Erken, et al. Very short-term load forecasting by Kalman filter algorithm[J]. Chinese Society for Electrical Engineering, 1996, 16(4):245-249.
|
[7] |
路轶, 王民昆. 基于短期负荷预测的超短期负荷预测曲线外推法[J]. 电力系统自动化, 2006, 30(16):102-104.
|
|
LU Yi, WANG Minkun. An ultra-short term load forecasting method based on short-term load forecasting[J]. Automation of Electric Power Systems, 2006, 30(16):102-104.
|
[8] |
马文晓, 白晓民, 沐连顺. 基于人工神经网络和模糊推理的短期负荷预测方法[J]. 电网技术, 2003, 27(5):29-32.
|
|
MA Wenxiao, BAI Xiaomin, MU Lianshun. Short term load forecasting using artificial neuron network and fuzzy inference[J]. Power System Technology, 2003, 27(5):29-32.
|
[9] |
耿艳, 韩学山, 韩力. 基于最小二乘支持向量机的短期负荷预测[J]. 电网技术, 2008, 32(18):72-76.
|
|
GENG Yan, HAN Xueshan, HAN Li. Short-term load forecasting based on least squares support vector machines[J]. Power System Technology, 2008, 32(18):72-76.
|
[10] |
徐军华, 刘天琪. 基于小波分解和人工神经网络的短期负荷预测[J]. 电网技术, 2004, 28(8):30-33.
|
|
XU Junhua, LIU Tianqi. An approach to short-term load forecasting based on wavelet transform and aritficial neural network[J]. Power System Technology, 2004, 28(8):30-33.
|
[11] |
邹红波, 伏春林, 喻圣. 基于Akima-LMD和GRNN的短期负荷预测[J]. 电工电能新技术, 2018, 37(1):51-56.
|
|
ZOU Hongbo, FU Chunlin, YU Sheng. Short-term load forecasting based on Akima-LMD and GRNN[J]. Advanced Technology of Electrical Engineering and Energy, 2018, 37(1):51-56.
|
[12] |
ALMALAQ A, EDWARDS G. A review of deep learning methods applied on load forecasting[C]// 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA). Piscataway, NJ, USA: IEEE, 2017: 511-516.
|
[13] |
CINAR Y G, MIRISAEE H, GOSWAMI P, et al. Period-aware content attention RNNs for time series forecasting with missing values[J]. Neurocomputing, 2018, 312:177-186.
doi: 10.1016/j.neucom.2018.05.090
URL
|
[14] |
杨龙, 吴红斌, 丁明, 等. 新能源电网中考虑特征选择的Bi-LSTM网络短期负荷预测[J]. 电力系统自动化, 2021, 45(3):166-173.
|
|
YANG Long, WU Hongbin, DING Ming, et al. Short-term load forecasting in renewable energy grid based on Bi-directional long short-term memory network considering feature selection[J]. Automation of Electric Power Systems, 2021, 45(3):166-173.
|
[15] |
陈振宇, 刘金波, 李晨, 等. 基于LSTM与XGBoost组合模型的超短期电力负荷预测[J]. 电网技术, 2020, 44(2):614-620.
|
|
CHEN Zhenyu, LIU Jinbo, LI Chen, et al. Ultra short-term power load forecasting based on combined LSTM-XGBoost model[J]. Power System Technology, 2020, 44(2):614-620.
|
[16] |
陆继翔, 张琪培, 杨志宏, 等. 基于CNN-LSTM混合神经网络模型的短期负荷预测方法[J]. 电力系统自动化, 2019, 43(8):131-137.
|
|
LU Jixiang, ZHANG Qipei, YANG Zhihong, et al. Short-term load forecasting method based on CNN-LSTM hybrid neural network model[J]. Automation of Electric Power Systems, 2019, 43(8):131-137.
|
[17] |
ALMALAQ A, EDWARDS G. A review of deep learning methods applied on load forecasting[C]// 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA). Piscataway, NJ, USA: IEEE, 2017: 511-516.
|
[18] |
朱文俊, 王毅, 罗敏, 等. 面向海量用户用电特性感知的分布式聚类算法[J]. 电力系统自动化, 2016, 40(12):21-27.
|
|
ZHU Wenjun, WANG Yi, LUO Min, et al. Distributed clustering algorithm for awareness of electricity consumption characteristics of massive consumers[J]. Automation of Electric Power Systems, 2016, 40(12):21-27.
|
[19] |
刘洋, 许立雄. 适用于海量负荷数据分类的高性能反向传播神经网络算法[J]. 电力系统自动化, 2018, 42(21):96-103.
|
|
LIU Yang, XU Lixiong. High-performance back propagation neural network algorithm for classification of mass load data[J]. Automation of Electric Power Systems, 2018, 42(21):96-103.
|
[20] |
VIEGAS J L, VIEIRA S M, SOUSA J M C, et al. Electricity demand profile prediction based on household characteristics[C]// 2015 12th International Conference on the European Energy Market (EEM). Piscataway, NJ, USA: IEEE, 2015: 1-5.
|
[21] |
AL-OTAIBI R, JIN N L, WILCOX T, et al. Feature construction and calibration for clustering daily load curves from smart-meter data[J]. IEEE Transactions on Industrial Informatics, 2016, 12(2):645-654.
doi: 10.1109/TII.9424
URL
|
[22] |
杨德昌, 赵肖余, 何绍文, 等. 面向海量用户用电数据的集成负荷预测[J]. 电网技术, 2018, 42(9):2923-2929.
|
|
YANG Dechang, ZHAO Xiaoyu, HE Shaowen, et al. Aggregated load forecasting based on massive household smart meter data[J]. Power System Technology, 2018, 42(9):2923-2929.
|
[23] |
MOORE B. Principal component analysis in linear systems: Controllability, observability, and model reduction[J]. IEEE Transactions on Automatic Control, 1981, 26(1):17-32.
doi: 10.1109/TAC.1981.1102568
URL
|
[24] |
SAINATH T N, KINGSBURY B, RAMABHADRAN B. Auto-encoder bottleneck features using deep belief networks[C]// 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Piscataway, NJ, USA: IEEE, 2012: 4153-4156.
|
[25] |
张宁, 刘天键. 考虑影响因素的短期负荷预测核函数ELM方法[J]. 武汉大学学报(工学版), 2018, 51(8):703-707.
|
|
ZHANG Ning, LIU Tianjian. Kernel function ELM method for short-term load forecasting considering influencing factors[J]. Engineering Journal of Wuhan University, 2018, 51(8):703-707.
|
[26] |
陈鸿琳, 李欣然, 冷华, 等. 运用PSO和GRNN的短期负荷二维组合预测[J]. 电力系统及其自动化学报, 2018, 30(2):85-89.
|
|
CHEN Honglin, LI Xinran, LENG Hua, et al. Bidirectional combined short-term load forecasting by using PSO and GRNN[J]. Proceedings of the CSU-EPSA, 2018, 30(2):85-89.
|
[27] |
贾慧敏, 何光宇, 方朝雄, 等. 用于负荷预测的层次聚类和双向夹逼结合的多层次聚类法[J]. 电网技术, 2007, 31(23):33-36.
|
|
JIA Huimin, HE Guangyu, FANG Chaoxiong, et al. Multi-level clustering method for hierarchical clustering and bidirectional capping combination for load forecasting[J]. Power System Technology, 2007, 31(23):33-36.
|