Journal of Shanghai Jiao Tong University ›› 2021, Vol. 55 ›› Issue (12): 1544-1553.doi: 10.16183/j.cnki.jsjtu.2021.296
Special Issue: 《上海交通大学学报》2021年“电气工程”专题; 《上海交通大学学报》2021年12期专题汇总专辑
Previous Articles Next Articles
TAN Jia1, LI Zhiyi1(), YANG Huan1, ZHAO Rongxiang1, JU Ping1,2
Received:
2021-07-30
Online:
2021-12-28
Published:
2021-12-30
Contact:
LI Zhiyi
E-mail:zhiyi@zju.edu.cn
CLC Number:
TAN Jia, LI Zhiyi, YANG Huan, ZHAO Rongxiang, JU Ping. A Multi-Level Collaborative Load Forecasting Method for Distribution Networks Based on Distributed Optimization[J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1544-1553.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2021.296
[1] | 谢小荣, 贺静波, 毛航银, 等. “双高”电力系统稳定性的新问题及分类探讨[J]. 中国电机工程学报, 2021, 41(2):461-475. |
XIE Xiaorong, HE Jingbo, MAO Hangyin, et al. New issues and classification of power system stability with high shares of renewables and power electronics[J]. Proceedings of the CSEE, 2021, 41(2):461-475. | |
[2] | 韦善阳, 黎静华, 黄乾, 等. 考虑多重因素耦合的广义负荷特征曲线的模式分析[J]. 电力系统自动化, 2021, 45(1):114-122. |
WEI Shanyang, LI Jinghua, HUANG Qian, et al. Pattern analysis of generalized load characteristic curve considering coupling of multiple factors[J]. Automation of Electric Power Systems, 2021, 45(1):114-122. | |
[3] | 陈海文, 王守相, 王绍敏, 等. 基于门控循环单元网络与模型融合的负荷聚合体预测方法[J]. 电力系统自动化, 2019, 43(1):65-72. |
CHEN Haiwen, WANG Shouxiang, WANG Sh-aomin, et al. Aggregated load forecasting method based on gated recurrent unit networks and model fusion[J]. Automation of Electric Power Systems, 2019, 43(1):65-72. | |
[4] | 孔祥玉, 李闯, 郑锋, 等. 基于经验模态分解与特征相关分析的短期负荷预测方法[J]. 电力系统自动化, 2019, 43(5):46-52. |
KONG Xiangyu, LI Chuang, ZHENG Feng, et al. Short-term load forecasting method based on empirical mode decomposition and feature correlation analysis[J]. Automation of Electric Power Systems, 2019, 43(5):46-52. | |
[5] | 赵兵, 王增平, 纪维佳, 等. 基于注意力机制的CNN-GRU短期电力负荷预测方法[J]. 电网技术, 2019, 43(12):4370-4376. |
ZHAO Bing, WANG Zengping, JI Weijia, et al. A short-term power load forecasting method based on attention mechanism of CNN-GRU[J]. Power System Technology, 2019, 43(12):4370-4376. | |
[6] |
GOIA A, MAY C, FUSAI G. Functional clustering and linear regression for peak load forecasting[J]. International Journal of Forecasting, 2010, 26(4):700-711.
doi: 10.1016/j.ijforecast.2009.05.015 URL |
[7] |
TRUDNOWSKI D J, MCREYNOLDS W L, JOHNSON J M. Real-time very short-term load prediction for power-system automatic generation control[J]. IEEE Transactions on Control Systems Technology, 2001, 9(2):254-260.
doi: 10.1109/87.911377 URL |
[8] | 张帆, 张峰, 张士文. 基于提升小波的时间序列分析法的电力负荷预测[J]. 电气自动化, 2017, 39(3):72-76. |
ZHANG Fan, ZHANG Feng, ZHANG Shiwen. Power load forecasting in the time series analysis method based on lifting wavelet[J]. Electrical Automation, 2017, 39(3):72-76. | |
[9] | 肖白, 聂鹏, 穆钢, 等. 基于多级聚类分析和支持向量机的空间负荷预测方法[J]. 电力系统自动化, 2015, 39(12):56-61. |
XIAO Bai, NIE Peng, MU Gang, et al. A spatial load forecasting method based on multilevel clustering analysis and support vector machine[J]. Automation of Electric Power Systems, 2015, 39(12):56-61. | |
[10] |
SINGH P, DWIVEDI P. Integration of new evolutionary approach with artificial neural network for solving short term load forecast problem[J]. Applied Energy, 2018, 217:537-549.
doi: 10.1016/j.apenergy.2018.02.131 URL |
[11] | 孔祥玉, 郑锋, 鄂志君, 等. 基于深度信念网络的短期负荷预测方法[J]. 电力系统自动化, 2018, 42(5):133-139. |
KONG Xiangyu, ZHENG Feng, E Zhijun, et al. Short-term load forecasting based on deep belief network[J]. Automation of Electric Power Systems, 2018, 42(5):133-139. | |
[12] | 房龙江. 多尺度空间分辨率下的多级负荷预测方法研究[D]. 吉林: 东北电力大学, 2018. |
FANG Longjiang. Study on the predition method of multi-stage load in multi-scale spatial resolution[D]. Jilin: Northeast Dianli University, 2018. | |
[13] | 顾洁, 孟璐, 郑睿程, 等. 考虑集群辨识的海量用户负荷分层概率预测[J]. 电力系统自动化, 2021, 45(5):71-78. |
GU Jie, MENG Lu, ZHENG Ruicheng, et al. Load-stratified probability forecasting for massive users considering cluster identification[J]. Automation of Electric Power Systems, 2021, 45(5):71-78. | |
[14] | 肖峻, 张璇, 张婷, 等. 应用信息熵原理的多路径负荷预测协同方法[J]. 电力系统及其自动化学报, 2013, 25(2):42-47. |
XIAO Jun, ZHANG Xuan, ZHANG Ting, et al. Method of multi-path load forecasting collaboration using maximum entropy principle[J]. Proceedings of the Chinese Society of Universities for Electric Power System and Its Automation, 2013, 25(2):42-47. | |
[15] |
LLOYD J R. GEFCom2012 hierarchical load forecasting: Gradient boosting machines and Gaussian processes[J]. International Journal of Forecasting, 2014, 30(2):369-374.
doi: 10.1016/j.ijforecast.2013.07.002 URL |
[16] |
BEN TAIEB S, HYNDMAN R J. A gradient boosting approach to the Kaggle load forecasting competition[J]. International Journal of Forecasting, 2014, 30(2):382-394.
doi: 10.1016/j.ijforecast.2013.07.005 URL |
[17] | PANG Y, YAO B, ZHOU X D, et al. Hierarchical electricity time series forecasting for integrating consumption patterns analysis and aggregation consistency[C]// Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2018: 3506-3512. |
[18] | SPILIOTIS E, ABOLGHASEMI M, HYNDMAN R J, et al. Hierarchical forecast reconciliation with machine learning[J]. Applied Soft Computing, 2021, 112:107756. |
[19] | 亢良伊, 王建飞, 刘杰, 等. 可扩展机器学习的并行与分布式优化算法综述[J]. 软件学报, 2018, 29(1):109-130. |
KANG Liangyi, WANG Jianfei, LIU Jie, et al. Survey on parallel and distributed optimization algorithms for scalable machine learning[J]. Journal of Software, 2018, 29(1):109-130. | |
[20] | BOYD S. Distributed optimization and statistical learning via the alternating direction method of multipliers[M]. San Francisco, CA, USA: Now Publishers Inc, 2010. |
[21] |
CHAMIKARA M A P, BERTOK P, KHALIL I, et al. Privacy preserving distributed machine learning with federated learning[J]. Computer Communications, 2021, 171:112-125.
doi: 10.1016/j.comcom.2021.02.014 URL |
[22] | MCMAHAN H B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[EB/OL]. [2021-06-20]. https://arxiv.org/abs/1602.05629. |
[23] | 康重庆, 牟涛, 夏清. 电力系统多级负荷预测及其协调问题: (一)研究框架[J]. 电力系统自动化, 2008, 32(7):34-38. |
KANG Chongqing, MU Tao, XIA Qing. Power system multilevel load forecasting and coordinating: Part one. Research framework[J]. Automation of Electric Power Systems, 2008, 32(7):34-38. | |
[24] | 沈泉江, 郭乃网, 郑作梁. 基于用电模式聚类的层级电力时序预测方法[J]. 计算机应用与软件, 2020, 37(11):73-78. |
SHEN Quanjiang, GUO Naiwang, ZHENG Zuoliang. Hierarchical electricity time series forecasting method based on clustering of electricity consumption patterns[J]. Computer Applications and Software, 2020, 37(11):73-78. | |
[25] | 张世旭, 苗世洪, 杨炜晨, 等. 基于自适应步长ADMM的配电网分布式鲁棒优化调度策略[J]. 高电压技术, 2021, 47(1):81-93. |
ZHANG Shixu, MIAO Shihong, YANG Weichen, et al. Distributed robust optimal dispatch for active distribution networks based on alternative direction method of multipliers with dynamic step size[J]. High Voltage Engineering, 2021, 47(1):81-93. | |
[26] |
HU L, YAN H Y, LI L, et al. MHAT: An efficient model-heterogenous aggregation training scheme for federated learning[J]. Information Sciences, 2021, 560:493-503.
doi: 10.1016/j.ins.2021.01.046 URL |
[27] |
HEGEDÜS I, DANNER G, JELASITY M. Decentralized learning works: An empirical comparison of gossip learning and federated learning[J]. Journal of Parallel and Distributed Computing, 2021, 148:109-124.
doi: 10.1016/j.jpdc.2020.10.006 URL |
[28] |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735-1780.
doi: 10.1162/neco.1997.9.8.1735 URL |
[29] | 陈纬楠, 胡志坚, 岳菁鹏, 等. 基于长短期记忆网络和LightGBM组合模型的短期负荷预测[J]. 电力系统自动化, 2021, 45(4):91-97. |
CHEN Weinan, HU Zhijian, YUE Jingpeng, et al. Short-term load prediction based on combined model of long short-term memory network and light gradient boosting machine[J]. Automation of Electric Power Systems, 2021, 45(4):91-97. | |
[30] | 陆继翔, 张琪培, 杨志宏, 等. 基于CNN-LSTM混合神经网络模型的短期负荷预测方法[J]. 电力系统自动化, 2019, 43(8):131-137. |
LU Jixiang, ZHANG Qipei, YANG Zhihong, et al. Short-term load forecasting method based on CNN-LSTM hybrid neural network model[J]. Automation of Electric Power Systems, 2019, 43(8):131-137. | |
[31] | 姚子麟, 张亮, 邹斌, 等. 含高比例风电的电力市场电价预测[J]. 电力系统自动化, 2020, 44(12):49-55. |
YAO Zilin, ZHANG Liang, ZOU Bin, et al. Electricity price prediction for electricity market with high proportion of wind power[J]. Automation of Electric Power Systems, 2020, 44(12):49-55. | |
[32] |
HONG T, XIE J R, BLACK J. Global energy forecasting competition 2017: Hierarchical probabilistic load forecasting[J]. International Journal of Forecasting, 2019, 35(4):1389-1399.
doi: 10.1016/j.ijforecast.2019.02.006 URL |
[33] | 孙庆凯, 王小君, 张义志, 等. 基于LSTM和多任务学习的综合能源系统多元负荷预测[J]. 电力系统自动化, 2021, 45(5):63-70. |
SUN Qingkai, WANG Xiaojun, ZHANG Yizhi, et al. Multiple load prediction of integrated energy system based on long short-term memory and multi-task learning[J]. Automation of Electric Power Systems, 2021, 45(5):63-70. |
[1] | LI Yuanchao,CHEN Feng. High-Rank Matrix Completion Method for Autism Spectrum Disorders [J]. Journal of Shanghai Jiaotong University, 2019, 53(6): 734-740. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||