Journal of Shanghai Jiao Tong University ›› 2024, Vol. 58 ›› Issue (10): 1500-1512.doi: 10.16183/j.cnki.jsjtu.2023.071
• Original article • Previous Articles Next Articles
LU Wen’an1, ZHU Qingxiao1, LI Zhaowei2, LIU Hui3, YU Yiping1()
Received:
2023-03-03
Revised:
2023-05-08
Accepted:
2023-05-26
Online:
2024-10-28
Published:
2024-11-01
CLC Number:
LU Wen’an, ZHU Qingxiao, LI Zhaowei, LIU Hui, YU Yiping. A Prediction Method of New Power System Frequency Characteristics Based on Convolutional Neural Network[J]. Journal of Shanghai Jiao Tong University, 2024, 58(10): 1500-1512.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2023.071
[1] | 卓振宇, 张宁, 谢小荣, 等. 高比例可再生能源电力系统关键技术及发展挑战[J]. 电力系统自动化, 2021, 45(9): 171-191. |
ZHUO Zhenyu, ZHANG Ning, XIE Xiaorong, et al. Key technologies and developing challenges of power system with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2021, 45(9): 171-191. | |
[2] | PHURAILATPAM C, RATHER Z H, BAHRANI B, et al. Measurement-based estimation of inertia in AC microgrids[J]. IEEE Transactions on Sustainable Energy, 2020, 11(3): 1975-1984. |
[3] | 孟建辉, 彭嘉琳, 王毅, 等. 多约束下光储系统的灵活虚拟惯性控制方法[J]. 电工技术学报, 2019, 34(14): 3046-3058. |
MENG Jianhui, PENG Jialin, WANG Yi, et al. Multi-constrained flexible virtual inertial control method for photovoltaic energy storage system[J]. Transactions of China Electrotechnical Society, 2019, 34(14): 3046-3058. | |
[4] | 王博, 杨德友, 蔡国伟. 高比例新能源接入下电力系统惯量相关问题研究综述[J]. 电网技术, 2020, 44(8): 2998-3007. |
WANG Bo, YANG Deyou, CAI Guowei. Review of research on power system inertia related issues in the context of high penetration of renewable power generation[J]. Power System Technology, 2020, 44(8): 2998-3007. | |
[5] | PEKER M, KOCAMAN A S, KARA B Y. Benefits of transmission switching and energy storage in power systems with high renewable energy penetration[J]. Applied Energy, 2018, 228: 1182-1197. |
[6] | 李元臣, 文云峰, 叶希, 等. 基于多新息辨识的电力系统节点惯量估计方法[J]. 电力自动化设备, 2022, 42(8): 89-95. |
LI Yuanchen, WEN Yunfeng, YE Xi, et al. Estimation method of power system nodal inertia based on multi-innovation identification[J]. Electric Power Automation Equipment, 2022, 42(8): 89-95. | |
[7] | CAO Y J, ZHANG Y, ZHANG H X, et al. Probabilistic optimal PV capacity planning for wind farm expansion based on NASA data[J]. IEEE Transactions on Sustainable Energy, 2017, 8(3): 1291-1300. |
[8] | 吕凯, 唐昊, 王珂, 等. 计及源荷双侧不确定性的跨区互联电网源网荷协同调度[J]. 电力系统自动化, 2019, 43(22): 38-45. |
LYU Kai, TANG Hao, WANG Ke, et al. Coordinated dispatching of source-grid-load for inter-regional power grid considering uncertainties of both source and load sides[J]. Automation of Electric Power Systems, 2019, 43(22): 38-45. | |
[9] | 张子扬, 张宁, 杜尔顺, 等. 双高电力系统频率安全问题评述及其应对措施[J]. 中国电机工程学报, 2022, 42(1): 1-25. |
ZHANG Ziyang, ZHANG Ning, DU Ershun, et al. Review and countermeasures on frequency security issues of power systems with high shares of renewables and power electronics[J]. Proceedings of the CSEE, 2022, 42(1): 1-25. | |
[10] | 文云峰, 杨伟峰, 林晓煌. 低惯量电力系统频率稳定分析与控制研究综述及展望[J]. 电力自动化设备, 2020, 40(9): 211-222. |
WEN Yunfeng, YANG Weifeng, LIN Xiaohuang. Review and prospect of frequency stability analysis and control of low-inertia power systems[J]. Electric Power Automation Equipment, 2020, 40(9): 211-222. | |
[11] | 张怡. 基于深度学习的电力系统扰动后频率预测[D]. 济南: 山东大学, 2018. |
ZHANG Yi. Power system frequency prediction after disturbances based on deep learning[D]. Jinan: Shandong University, 2018. | |
[12] | 杨挺, 赵黎媛, 王成山. 人工智能在电力系统及综合能源系统中的应用综述[J]. 电力系统自动化, 2019, 43(1): 2-14. |
YANG Ting, ZHAO Liyuan, WANG Chengshan. Review on application of artificial intelligence in power system and integrated energy system[J]. Automation of Electric Power Systems, 2019, 43(1): 2-14. | |
[13] | WEN S L, ZHAO T Y, WANG Y, et al. A deep learning method for power fluctuation identification from frequency fluctuations[C]// 2019 IEEE Power & Energy Society General Meeting. Atlanta, USA: IEEE, 2019: 1-5. |
[14] | CHEN X Y, CHEN Z, HAN X Y, et al. A method of frequency features prediction of post-disturbance power system based on XGBoost algorithm[C]// 2020 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia). Weihai, China: IEEE, 2020: 1535-1540. |
[15] | MA C H, WANG L, GAI C H, et al. Frequency security assessment for receiving-end system based on deep learning method[C]// 2020 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia). Weihai, China: IEEE, 2020: 831-836. |
[16] | 薄其滨, 王晓茹, 刘克天. 基于v-SVR的电力系统扰动后最低频率预测[J]. 电力自动化设备, 2015, 35(7): 83-88. |
BO Qibin, WANG Xiaoru, LIU Ketian. Minimum frequency prediction based on v-SVR for post-disturbance power system[J]. Electric Power Automation Equipment, 2015, 35(7): 83-88. | |
[17] | LONG X L, GUO J, HAO R, et al. Optical neural networks of handwriting recognition using optical scattering unit system[C]// Asia Communications and Photonics Conference/International Conference on Information Photonics and Optical Communications 2020. Beijing, China: Optica Publishing Group, 2020: 1-3. |
[18] | 马世龙, 乌尼日其其格, 李小平. 大数据与深度学习综述[J]. 智能系统学报, 2016, 11(6): 728-742. |
MA Shilong, WUNIRI Qiqige, LI Xiaoping. Deep learning with big data: State of the art and development[J]. CAAI Transactions on Intelligent Systems, 2016, 11(6): 728-742. | |
[19] | 张泽超. 深度学习网络分布式训练方案研究与性能优化[D]. 杭州: 浙江大学, 2021. |
ZHANG Zechao. Optimization of distributed training strategies for deep learning networks[D]. Hangzhou: Zhejiang University, 2021. | |
[20] | ANTIOQUIA A M C, TAN D S, AZCARRAGA A, et al. ZipNet:ZFNet-level accuracy with 48 × fewer parameters[C]// 2018 IEEE Visual Communications and Image Processing. Taichung, China: IEEE, 2018: 1-4. |
[21] | JILANI U, AKRAM N, ABBASI M, et al. Machine learning based leaves classifier using CNN and reduced VGG net model[C]// 2022 Global Conference on Wireless and Optical Technologies. Malaga, Spain:IEEE, 2022: 1-7. |
[22] | 林进钿. 基于深度学习的电力系统扰动后动态频率特征预测[D]. 成都: 西南交通大学, 2019. |
LIN Jintian. Power system post-disturbance dynamic frequency feature prediction based on deep learning[D]. Chengdu: Southwest Jiaotong University, 2019. | |
[23] | 郑超, 王士元, 张波琦, 等. 光伏高渗透电网动态频率特性及应对措施[J]. 电网技术, 2019, 43(11): 4064-4073. |
ZHENG Chao, WANG Shiyuan, ZHANG Boqi, et al. Dynamic frequency characteristics and countermeasures of power grid with highly penetrated photovoltaics[J]. Power System Technology, 2019, 43(11): 4064-4073. | |
[24] | 陈俊佟. t-SNE结合支持向量机的降维分类研究[D]. 大连: 大连理工大学, 2021. |
CHEN Juntong. Research on dimensionality reduction classification of t-SNE combined with support vector machine[D]. Dalian: Dalian University of Technology, 2021. |
[1] | DENG Xiaoyu, LIU Muyang, CHANG Xiqiang, NAN Dongliang, MO Ruo, CHEN Junru. Online Monitoring Method for Inertial Support Capacity of Point-to-Grid in New Power Systems [J]. Journal of Shanghai Jiao Tong University, 2024, 58(9): 1390-1399. |
[2] | YU Miao, HU Jingxuan, ZHANG Shouzhi, WEI Jingjing, SUN Jianqun, WU Yixiao. Fast Stability of New Power System Based on a PMU Gradient Dynamic Deviation Method [J]. Journal of Shanghai Jiao Tong University, 2024, 58(1): 40-49. |
[3] | ZHAN Ke, ZHU Renchuan. A CNN-LSTM Ship Motion Extreme Value Prediction Model [J]. Journal of Shanghai Jiao Tong University, 2023, 57(8): 963-971. |
[4] | LI Qing, HUANGFU Yubin, LI Jiangyun, YANG Zhifang, CHEN Peng, WANG Zihan. UConvTrans:A Dual-Flow Cardiac Image Segmentation Network by Global and Local Information Integration [J]. Journal of Shanghai Jiao Tong University, 2023, 57(5): 570-581. |
[5] | ZENG Guozhi, WEI Ziqing, YUE Bao, DING Yunxiao, ZHENG Chunyuan, ZHAI Xiaoqiang. Energy Consumption Prediction of Office Buildings Based on CNN-RNN Combined Model [J]. Journal of Shanghai Jiao Tong University, 2022, 56(9): 1256-1261. |
[6] | ZHAO Yong, SU Dan. Rogue Wave Prediction Based on Four Combined Long Short-Term Memory Neural Network Models [J]. Journal of Shanghai Jiao Tong University, 2022, 56(4): 516-522. |
[7] | TUNG Hao (董昊), ZHENG Chao (郑超), MAO Xinsheng(毛新生), QIAN Dahong (钱大宏). Multi-Lead ECG Classification via an Information-Based Attention Convolutional Neural Network [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 55-69. |
[8] | ZHAN Zhu (占竹), ZHANG Wenjun (张文俊), CHEN Xia (陈霞), WANG Jun (汪军) . Objective Evaluation of Fabric Flatness Grade Based on Convolutional Neural Network [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 503-510. |
[9] | XUE Rongrong, WANG Zhiwu, YAN Guozheng, ZHUANG Haoyu. Noise Reduction Method for Intestinal Image Acquired by Intestinal Robot [J]. Journal of Shanghai Jiao Tong University, 2021, 55(10): 1303-1309. |
[10] | ZHAO Yong (赵勇), MENG Yang (孟杨), YU Pengyao (于鹏垚), WANG Tianlin (王天霖), SU Shaojuan (苏绍娟). Prediction of Fluid Force Exerted on Bluff Body by Neural Network Method [J]. Journal of Shanghai Jiao Tong University (Science), 2020, 25(2): 186-192. |
[11] | FU Ling (傅玲), MA Jingchen (马璟琛), CHEN Yizhi (琛奕志), LARSSON Rasmus, ZHAO Jun *(赵俊). Automatic Detection of Lung Nodules Using 3D Deep Convolutional Neural Networks [J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(4): 517-523. |
[12] | CHEN Yimin (陈一民), LU Rongrong (陆蓉蓉), ZOU Yibo (邹一波), ZHANG Yanhui (张燕辉). Branch-Activated Multi-Domain Convolutional Neural Network for Visual Tracking [J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(3): 360-. |
[13] | LI Yangyang,SHI Licheng,WAN Weibing,ZHAO Qunfei. A Convolutional Neural Network-Based Method for 3D Object Detection [J]. Journal of Shanghai Jiaotong University, 2018, 52(1): 7-12. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||