Journal of Shanghai Jiao Tong University ›› 2025, Vol. 59 ›› Issue (2): 266-273.doi: 10.16183/j.cnki.jsjtu.2023.383
• New Type Power System and the Integrated Energy • Previous Articles Next Articles
QIN Hao1,2, SU Liwei1, WU Guangbin1, JIANG Chongying2, XU Zhipeng2, KANG Feng1, TAN Huochao1, ZHANG Yongjun2()
Received:
2023-08-08
Revised:
2023-09-28
Accepted:
2023-11-07
Online:
2025-02-28
Published:
2025-03-11
CLC Number:
QIN Hao, SU Liwei, WU Guangbin, JIANG Chongying, XU Zhipeng, KANG Feng, TAN Huochao, ZHANG Yongjun. Short-Term Telephone-Traffic Prediction of Power Grid Customer Service Based on Adaboost-CNN[J]. Journal of Shanghai Jiao Tong University, 2025, 59(2): 266-273.
Tab.4
Comparison of prediction errors
模型 | eMAE/通 | eMAPE/% |
---|---|---|
ARIMA | 2 224.1 | 32.78 |
ELM | 1 792.6 | 26.42 |
LSTM | 1 380.1 | 19.34 |
Adaboost | 995.4 | 14.67 |
CNN | 1 302.0 | 15.21 |
单一预测模型平均误差 | 1 538.8 | 21.68 |
LSTM-CNN | 1 176.9 | 17.35 |
EMD-CNN | 974.6 | 14.37 |
组合预测模型平均误差 | 1 075.6 | 15.86 |
所提方法(不考虑增值服务) | 850.8 | 12.54 |
所提方法(考虑增值服务) | 721.2 | 10.63 |
[1] |
谭刚, 陈聿, 彭云竹. 融合领域特征知识图谱的电网客服问答系统[J]. 计算机工程与应用, 2020, 56(3): 232-239.
doi: 10.3778/j.issn.1002-8331.1907-0385 |
TAN Gang, CHEN Yu, PENG Yunzhu. Hybrid domain feature knowledge graph smart question answering system[J]. Computer Engineering and Applications, 2020, 56(3): 232-239.
doi: 10.3778/j.issn.1002-8331.1907-0385 |
|
[2] | 李玮, 李树国, 喻玮. 基于停电事件分析的区域性话务峰涌预测[J]. 自动化技术与应用, 2024, 43(4): 9-13. |
LI Wei, LI Shuguo, YU Wei. Prediction of regional traffic rush based on blackout event analysis[J]. Techniques of Automation and Applications. 2024, 43(4): 9-13. | |
[3] | 彭渤. 呼叫中心排班优化研究—以电力公司呼叫中心为例[D]. 天津: 天津大学, 2020. |
PENG Bo. Study on scheduling optimization of call center—Take the call center of Power Company as an example[D]. Tianjin: Tianjin University, 2020. | |
[4] | XIAO X P, DUAN H M, WEN J H. A novel car-following inertia gray model and its application in forecasting short-term traffic flow[J]. Applied Mathematical Modelling, 2020, 87: 546-570. |
[5] | 孙同川, 王振岭, 孙建设, 等. 基于Kalman滤波的原子时算法研究[J]. 计算机测量与控制, 2023, 31(3): 294-299. |
SUN Tongchuan, WANG Zhenling, SUN Jianshe, et al. Research on atomic time algorithm based on Kalman filter[J]. Computer Measurement & Control, 2023, 31(3): 294-299. | |
[6] | SONG Y, WANG H R. Real-time adjustment way of reservoir schedule forecasting projects based on improved variable oblivion factor least square arithmetic coupling Kalman filters[J]. Energy Reports, 2022, 8: 555-562. |
[7] | 秦艳辉, 马晓磊, 吴鑫, 等. 基于灰色滚动预测模型的多接口变换器功率直接控制方法[J]. 工业仪表与自动化装置, 2023(1): 62-66. |
QIN Yanhui, MA Xiaolei, WU Xin, et al. Direct power control method of multi interface converter based on grey rolling prediction model[J]. Industrial Instrumentation & Automation, 2023(1): 62-66. | |
[8] | LI Y, BAI X, LIU B. Forecasting clean energy generation volume in China with a novel fractional Time-Delay polynomial discrete grey model[J]. Energy and Buildings, 2022, 271: 112305. |
[9] |
万安平, 杨洁, 缪徐, 等. 基于注意力机制与神经网络的热电联产锅炉负荷预测[J]. 上海交通大学学报, 2023, 57(3): 316-325.
doi: 10.16183/j.cnki.jsjtu.2021.346 |
WAN Anping, YANG Jie, MIAO Xu, et al. Boiler load forecasting of CHP plant based on attention mechanism and deep neural network[J]. Journal of Shanghai Jiao Tong University, 2023, 57(3): 316-325. | |
[10] | HAN R, JIA Z H, QIN X Z, et al. Application of support vector machine to mobile communications in telephone traffic load of monthly busy hour prediction[C]// 2009 Fifth International Conference on Natural Computation. Tianjian,China: IEEE, 2009: 349-353. |
[11] | 赵龙, 周源, 李飞, 等. 基于XGBoost算法的坐席话务量预测[J]. 现代信息科技, 2021, 5(22): 86-88. |
ZHAO Long, ZHOU Yuan, LI Fei, et al. Call center seat telephone-traffic volume prediction based on XGBoost algorithm[J]. Modern Information Technology, 2021, 5(22): 86-88. | |
[12] | JALAL M E, HOSSEINI M, KARLSSON S. Forecasting incoming call volumes in call centers with recurrent Neural Networks[J]. Journal of Business Research, 2016, 69(11): 4811-4814. |
[13] | 黄雪婷. 基于SARIMA和CNN-LSTM组合模型的呼叫中心日话务量预测研究[D]. 南京: 南京邮电大学, 2022. |
HUANG Xueting. Research on call center daily traffic prediction based on SARIMA and CNN-LSTM combination model[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2022. | |
[14] | 林珊, 王红, 齐林海, 等. 基于条件生成对抗网络的短期负荷预测[J]. 电力系统自动化, 2021, 45(11): 52-60. |
LIN Shan, WANG Hong, QI Linhai, et al. Short-term load forecasting based on conditional generative adversarial network[J]. Automation of Electric Power Systems, 2021, 45(11): 52-60. | |
[15] | 谢小瑜, 周俊煌, 张勇军, 等. 基于W-BiLSTM的可再生能源超短期发电功率预测方法[J]. 电力系统自动化, 2021, 45(8): 175-184. |
XIE Xiaoyu, ZHOU Junhuang, ZHANG Yongjun, et al. W-BiLSTM based ultra-short-term generation power prediction method of renewable energy[J]. Automation of Electric Power Systems, 2021, 45(8): 175-184. | |
[16] | 龙干, 黄媚, 方力谦, 等. 基于改进多元宇宙算法优化ELM的短期电力负荷预测[J]. 电力系统保护与控制, 2022, 50(19): 99-106. |
LONG Gan, HUANG Mei, FANG Liqian, et al. Short-term power load forecasting based on an improved multi-verse optimizer algorithm optimized extreme learning machine[J]. Power System Protection and Control, 2022, 50(19): 99-106. | |
[17] |
曾国治, 魏子清, 岳宝, 等. 基于CNN-RNN组合模型的办公建筑能耗预测[J]. 上海交通大学学报, 2022, 56(9): 1256-1261.
doi: 10.16183/j.cnki.jsjtu.2021.192 |
ZENG Guozhi, WEI Ziqing, YUE Bao, et al. Energy consumption prediction of office buildings based on CNN-RNN combined model[J]. Journal of Shanghai Jiao Tong University, 2022, 56(9): 1256-1261. | |
[18] | WANG Q, BU S Q, HE Z Y, et al. Toward the prediction level of situation awareness for electric power systems using CNN-LSTM network[J]. IEEE Transactions on Industrial Informatics, 2021, 17(10): 6951-6961. |
[19] | 朱吉然, 张帝, 张志丹, 等. 基于AHP和BP-Adaboost 的低压电力用户价值评价方法[J]. 电力科学与技术学报, 2022, 37(5): 155-163. |
ZHU Jiran, ZHANG Di, ZHANG Zhidan, et al. A value evaluation method of power user based on AHP and BP-Adaboost algorithms[J]. Journal of Electric Power Science and Technology, 2022, 37(5): 155-163. | |
[20] | 游文霞, 申坤, 杨楠, 等. 基于AdaBoost集成学习的窃电检测研究[J]. 电力系统保护与控制, 2020, 48(19): 151-159. |
YOU Wenxia, SHEN Kun, YANG Nan, et al. Research on electricity theft detection based on AdaBoost ensemble learning[J]. Power System Protection and Control, 2020, 48(19): 151-159. | |
[21] | 李国成, 陆俊, 王赟, 等. 基于Bagging二次加权集成的孤立森林窃电检测算法[J]. 电力系统自动化, 2022, 46(2): 92-100. |
LI Guocheng, LU Jun, WANG Yun, et al. Isolated-forest electricity theft detection algorithm based on Bagging secondary weighted ensemble[J]. Automation of Electric Power Systems, 2022, 46(2): 92-100. | |
[22] | 杨少瑜, 黄国栋, 林星宇, 等. 基于拉格朗日插值法的概率建模方法及其在概率潮流分析中的应用[J]. 现代电力, 2021, 38(4): 378-385. |
YANG Shaoyu, HUANG Guodong, LIN Xingyu, et al. A Lagrange interpolation based probabilistic modeling method and its application in probabilistic power flow analysis[J]. Modern Electric Power, 2021, 38(4): 378-385. | |
[23] | 马莉, 陈应雨, 田钉荣, 等. 基于改进层次分析法的多级电压暂降严重程度评估[J]. 电力系统保护与控制, 2023, 51(17): 49-57. |
MA Li, CHEN Yingyu, TIAN Dingrong, et al. Severity evaluation of multistage voltage sag based on an improved analytic hierarchy process[J]. Power System Protection and Control, 2023, 51(17): 49-57. |
[1] | JIANG Yilin1, 2∗ (蒋伊琳), LI Xiang1, 2 (李向), ZHANG Haoping3 (张昊平). Emitter Beam State Sensing Based on Convolutional Neural Network and Received Signal Strength [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 1017-1022. |
[2] | LU Wen’an, ZHU Qingxiao, LI Zhaowei, LIU Hui, YU Yiping. A Prediction Method of New Power System Frequency Characteristics Based on Convolutional Neural Network [J]. Journal of Shanghai Jiao Tong University, 2024, 58(10): 1500-1512. |
[3] | ZHAN Ke, ZHU Renchuan. A CNN-LSTM Ship Motion Extreme Value Prediction Model [J]. Journal of Shanghai Jiao Tong University, 2023, 57(8): 963-971. |
[4] | ZHU Changsheng1 (朱昶胜),KANG Lianghe1.3* (康亮河),FENG Wenfang2 (冯文芳). Predicting Stock Closing Price with Stock Network Public Opinion Based on AdaBoost-AAFSA-Elman Model and CEEMDAN Algorithm [J]. J Shanghai Jiaotong Univ Sci, 2023, 28(6): 809-821. |
[5] | LI Qing, HUANGFU Yubin, LI Jiangyun, YANG Zhifang, CHEN Peng, WANG Zihan. UConvTrans:A Dual-Flow Cardiac Image Segmentation Network by Global and Local Information Integration [J]. Journal of Shanghai Jiao Tong University, 2023, 57(5): 570-581. |
[6] | ZENG Guozhi, WEI Ziqing, YUE Bao, DING Yunxiao, ZHENG Chunyuan, ZHAI Xiaoqiang. Energy Consumption Prediction of Office Buildings Based on CNN-RNN Combined Model [J]. Journal of Shanghai Jiao Tong University, 2022, 56(9): 1256-1261. |
[7] | ZHAO Yong, SU Dan. Rogue Wave Prediction Based on Four Combined Long Short-Term Memory Neural Network Models [J]. Journal of Shanghai Jiao Tong University, 2022, 56(4): 516-522. |
[8] | TUNG Hao (董昊), ZHENG Chao (郑超), MAO Xinsheng(毛新生), QIAN Dahong (钱大宏). Multi-Lead ECG Classification via an Information-Based Attention Convolutional Neural Network [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 55-69. |
[9] | ZHAN Zhu (占竹), ZHANG Wenjun (张文俊), CHEN Xia (陈霞), WANG Jun (汪军) . Objective Evaluation of Fabric Flatness Grade Based on Convolutional Neural Network [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 503-510. |
[10] | XUE Rongrong, WANG Zhiwu, YAN Guozheng, ZHUANG Haoyu. Noise Reduction Method for Intestinal Image Acquired by Intestinal Robot [J]. Journal of Shanghai Jiao Tong University, 2021, 55(10): 1303-1309. |
[11] | ZHAO Yong (赵勇), MENG Yang (孟杨), YU Pengyao (于鹏垚), WANG Tianlin (王天霖), SU Shaojuan (苏绍娟). Prediction of Fluid Force Exerted on Bluff Body by Neural Network Method [J]. Journal of Shanghai Jiao Tong University (Science), 2020, 25(2): 186-192. |
[12] | ZHOU Jian (周剑), YANG Qidong (杨启东), ZHANG Xiaofei (张小飞), HAN Chong (韩崇), SUN Lijuan (孙力娟). Traffic Prediction Method for GEO Satellites Combining ARIMA Model and Grey Model [J]. Journal of Shanghai Jiao Tong University (Science), 2020, 25(1): 65-69. |
[13] | FU Ling (傅玲), MA Jingchen (马璟琛), CHEN Yizhi (琛奕志), LARSSON Rasmus, ZHAO Jun *(赵俊). Automatic Detection of Lung Nodules Using 3D Deep Convolutional Neural Networks [J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(4): 517-523. |
[14] | CHEN Yimin (陈一民), LU Rongrong (陆蓉蓉), ZOU Yibo (邹一波), ZHANG Yanhui (张燕辉). Branch-Activated Multi-Domain Convolutional Neural Network for Visual Tracking [J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(3): 360-. |
[15] | LI Yangyang,SHI Licheng,WAN Weibing,ZHAO Qunfei. A Convolutional Neural Network-Based Method for 3D Object Detection [J]. Journal of Shanghai Jiaotong University, 2018, 52(1): 7-12. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 325
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract |
|
|||||||||||||||||||||||||||||||||||||||||||||||||