Journal of Shanghai Jiao Tong University (Science) ›› 2019, Vol. 24 ›› Issue (4): 517-523.doi: 10.1007/s12204-019-2084-4
Previous Articles Next Articles
FU Ling (傅玲), MA Jingchen (马璟琛), CHEN Yizhi (琛奕志), LARSSON Rasmus, ZHAO Jun *(赵俊)
Online:
2019-08-01
Published:
2019-07-29
Contact:
ZHAO Jun *(赵俊)
E-mail: junzhao@sjtu.edu.cn
CLC Number:
FU Ling (傅玲), MA Jingchen (马璟琛), CHEN Yizhi (琛奕志), LARSSON Rasmus, ZHAO Jun *(赵俊). Automatic Detection of Lung Nodules Using 3D Deep Convolutional Neural Networks[J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(4): 517-523.
[1] SIEGEL R L, MILLER K D, JEMAL A. Cancer statistics,2016 [J]. CA: A Cancer Journal for Clinicians,2016, 66(1): 7-30. [2] WANG B, TIAN X D, WANG Q, et al. Pulmonarynodule detection in CT images based on shape constraintCV model [J]. Medical Physics, 2015, 42(3):1241-1254. [3] LI Q, SONE S, DOI K. Selective enhancement filtersfor nodules, vessels, and airway walls in two- andthree-dimensional CT scans [J]. Medical Physics, 2003,30(8): 2040-2051. [4] TAN M, DEKLERCK R, JANSEN B, et al. A novelcomputer-aided lung nodule detection system for CTimages [J]. Medical Physics, 2011, 38(10): 5630-5645. [5] MESSAY T, HARDIE R C, ROGERS S K. A new computationallyefficient CAD system for pulmonary noduledetection in CT imagery [J]. Medical Image Analysis,2010, 14(3): 390-406. [6] SETIO A A A, CIOMPI F, LITJENS G, et al. Pulmonarynodule detection in CT images: False positivereduction using multi-view convolutional networks [J].IEEE Transactions on Medical Imaging, 2016, 35(5):1160-1169. [7] MURPHY K, VAN GINNEKEN B, SCHILHAM A MR, et al. A large-scale evaluation of automatic pulmonarynodule detection in chest CT using local imagefeatures and k-nearest-neighbour classification [J].Medical Image Analysis, 2009, 13(5): 757-770. [8] JACOBS C, VAN RIKXOORT E M, TWELLMANNT, et al. Automatic detection of subsolid pulmonarynodules in thoracic computed tomography images [J].Medical Image Analysis, 2014, 18(2): 374-384. [9] SETIO A A A, JACOBS C, GELDERBLOM J, etal. Automatic detection of large pulmonary solid nodulesin thoracic CT images [J]. Medical Physics, 2015,42(10): 5642-5653. [10] CIOMPI F, JACOBS C, SCHOLTEN E T, et al. Bagof-frequencies: A descriptor of pulmonary nodules incomputed tomography images [J]. IEEE Transactionson Medical Imaging, 2015, 34(4): 962-973. |
[1] | PAN Meiqi, HE Xing. A Fault Diagnosis Method for Wind Turbines Based on Zero-Shot Learning [J]. Journal of Shanghai Jiao Tong University, 2025, 59(5): 561-568. |
[2] | QIN Hao, SU Liwei, WU Guangbin, JIANG Chongying, XU Zhipeng, KANG Feng, TAN Huochao, ZHANG Yongjun. Short-Term Telephone-Traffic Prediction of Power Grid Customer Service Based on Adaboost-CNN [J]. Journal of Shanghai Jiao Tong University, 2025, 59(2): 266-273. |
[3] | JIANG Yilin1, 2∗ (蒋伊琳), LI Xiang1, 2 (李向), ZHANG Haoping3 (张昊平). Emitter Beam State Sensing Based on Convolutional Neural Network and Received Signal Strength [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 1017-1022. |
[4] | LU Wen’an, ZHU Qingxiao, LI Zhaowei, LIU Hui, YU Yiping. A Prediction Method of New Power System Frequency Characteristics Based on Convolutional Neural Network [J]. Journal of Shanghai Jiao Tong University, 2024, 58(10): 1500-1512. |
[5] | ZHAN Ke, ZHU Renchuan. A CNN-LSTM Ship Motion Extreme Value Prediction Model [J]. Journal of Shanghai Jiao Tong University, 2023, 57(8): 963-971. |
[6] | LI Qing, HUANGFU Yubin, LI Jiangyun, YANG Zhifang, CHEN Peng, WANG Zihan. UConvTrans:A Dual-Flow Cardiac Image Segmentation Network by Global and Local Information Integration [J]. Journal of Shanghai Jiao Tong University, 2023, 57(5): 570-581. |
[7] | ZENG Guozhi, WEI Ziqing, YUE Bao, DING Yunxiao, ZHENG Chunyuan, ZHAI Xiaoqiang. Energy Consumption Prediction of Office Buildings Based on CNN-RNN Combined Model [J]. Journal of Shanghai Jiao Tong University, 2022, 56(9): 1256-1261. |
[8] | ZHAO Yong, SU Dan. Rogue Wave Prediction Based on Four Combined Long Short-Term Memory Neural Network Models [J]. Journal of Shanghai Jiao Tong University, 2022, 56(4): 516-522. |
[9] | TUNG Hao (董昊), ZHENG Chao (郑超), MAO Xinsheng(毛新生), QIAN Dahong (钱大宏). Multi-Lead ECG Classification via an Information-Based Attention Convolutional Neural Network [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 55-69. |
[10] | ZHAN Zhu (占竹), ZHANG Wenjun (张文俊), CHEN Xia (陈霞), WANG Jun (汪军) . Objective Evaluation of Fabric Flatness Grade Based on Convolutional Neural Network [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 503-510. |
[11] | XUE Rongrong, WANG Zhiwu, YAN Guozheng, ZHUANG Haoyu. Noise Reduction Method for Intestinal Image Acquired by Intestinal Robot [J]. Journal of Shanghai Jiao Tong University, 2021, 55(10): 1303-1309. |
[12] | ZHAO Yong (赵勇), MENG Yang (孟杨), YU Pengyao (于鹏垚), WANG Tianlin (王天霖), SU Shaojuan (苏绍娟). Prediction of Fluid Force Exerted on Bluff Body by Neural Network Method [J]. Journal of Shanghai Jiao Tong University (Science), 2020, 25(2): 186-192. |
[13] | CHEN Yimin (陈一民), LU Rongrong (陆蓉蓉), ZOU Yibo (邹一波), ZHANG Yanhui (张燕辉). Branch-Activated Multi-Domain Convolutional Neural Network for Visual Tracking [J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(3): 360-. |
[14] | LI Yangyang,SHI Licheng,WAN Weibing,ZHAO Qunfei. A Convolutional Neural Network-Based Method for 3D Object Detection [J]. Journal of Shanghai Jiaotong University, 2018, 52(1): 7-12. |
[15] | XU Yan-ran (徐嫣然), ZHAO Jun* (赵俊). Computer-Aided Detection for CT Colonography [J]. Journal of shanghai Jiaotong University (Science), 2014, 19(5): 531-537. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||