[1] SIEGEL R L, MILLER K D, JEMAL A. Cancer statistics,2016 [J]. CA: A Cancer Journal for Clinicians,2016, 66(1): 7-30.
[2] WANG B, TIAN X D, WANG Q, et al. Pulmonarynodule detection in CT images based on shape constraintCV model [J]. Medical Physics, 2015, 42(3):1241-1254.
[3] LI Q, SONE S, DOI K. Selective enhancement filtersfor nodules, vessels, and airway walls in two- andthree-dimensional CT scans [J]. Medical Physics, 2003,30(8): 2040-2051.
[4] TAN M, DEKLERCK R, JANSEN B, et al. A novelcomputer-aided lung nodule detection system for CTimages [J]. Medical Physics, 2011, 38(10): 5630-5645.
[5] MESSAY T, HARDIE R C, ROGERS S K. A new computationallyefficient CAD system for pulmonary noduledetection in CT imagery [J]. Medical Image Analysis,2010, 14(3): 390-406.
[6] SETIO A A A, CIOMPI F, LITJENS G, et al. Pulmonarynodule detection in CT images: False positivereduction using multi-view convolutional networks [J].IEEE Transactions on Medical Imaging, 2016, 35(5):1160-1169.
[7] MURPHY K, VAN GINNEKEN B, SCHILHAM A MR, et al. A large-scale evaluation of automatic pulmonarynodule detection in chest CT using local imagefeatures and k-nearest-neighbour classification [J].Medical Image Analysis, 2009, 13(5): 757-770.
[8] JACOBS C, VAN RIKXOORT E M, TWELLMANNT, et al. Automatic detection of subsolid pulmonarynodules in thoracic computed tomography images [J].Medical Image Analysis, 2014, 18(2): 374-384.
[9] SETIO A A A, JACOBS C, GELDERBLOM J, etal. Automatic detection of large pulmonary solid nodulesin thoracic CT images [J]. Medical Physics, 2015,42(10): 5642-5653.
[10] CIOMPI F, JACOBS C, SCHOLTEN E T, et al. Bagof-frequencies: A descriptor of pulmonary nodules incomputed tomography images [J]. IEEE Transactionson Medical Imaging, 2015, 34(4): 962-973.
|