[1] Alzheimer’s Association. 2013 Alzheimer’s disease facts and figures [J]. Alzheimer’s & Dementia, 2013,9(2): 208-245.[2] Hampel H, Prvulovic D, Teipel S, et al. The future of Alzheimer’s disease: The next 10 years [J]. Progress in Neurobiology, 2011, 95(4): 718-728.[3] Reiman E M, Jagust W J. Brain imaging in the study of Alzheimer’s disease [J]. NeuroImage, 2012,61(2): 505-516.[4] Querbes O, Aubry F, Pariente J, et al. Early diagnosis of Alzheimer’s disease using cortical thickness:Impact of cognitive reserve [J]. Brain, 2009, 132(8):2036-2047.[5] Duara R, Grady C, Haxby J, et al. Positron emission tomography in Alzheimer’s disease [J]. Neurology,1986, 36(7): 879-887.[6] Norderg A, Rinne J O, Kadir A, et al. The use of PET in Alzheimer disease [J]. Nature Reviews Neurology,2010, 6(2): 78-87.[7] Jagust W J, Bandy D, Chen K, et al. The Alzheimer’s disease neuroimaging initiative positron emission tomography core [J]. Alzheimer’s & Dementia,2010, 6(3): 221-229.[8] Foeter N L, Heidebrink J L, Clark C M, et al. FDG-PET improves accuracy in distinguishing frontotemporal dementia and Alzheimer’s disease [J].Brain, 2007, 130(10): 2616-2635.[9] Du A-T, Schuff N, Kramer J H, et al. Different regional patterns of cortical thinning in Alzheimer’s disease and frontotemporal dementia [J]. Brain, 2007,130(4): 1159-1166.[10] Dickerson B C, Feczko E, Augustinack J C, et al. Differential effects of aging and Alzheimer’s disease on medial temporal lobe cortical thickness and surface area [J]. Neurobiology of Aging, 2009, 30(3): 432-440.[11] Gray K R, Wolz R, Keihaninejad S, et al. Regional analysis of FDG-PET for use in the classification of Alzheimer’s disease [C]// 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro. Chicago, USA: IEEE, 2011: 1082-1085.[12] Gray K R, Woiz R, Heckemann R A, et al. Multiregion analysis of longitudinal FDG-PET for the classification of Alzheimer’s disease [J]. NeuroImage, 2012,60(1): 221-229.[13] Salmon E, Sadzot B, Maquet P, et al. Differential diagnosis of Alzheimer’s disease with PET [J]. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine, 1994, 35(3): 391-398.[14] Mosconi L. Glucose metabolism in normal aging and Alzheimer’s disease: Methodological and physiological considerations for PET studies [J]. Clinical and Translational Imaging, 2013, 1(4): 217-233.[15] Ill′an I, Gorriz J, Lopez M, et al. Computer aided diagnosis of Alzheimer’s disease using component based SVM [J]. Applied Soft Computing, 2011,11(2): 2376-2382.[16] Kim E J, Cho S S, Jeong Y, et al. Glucose metabolism in early onset versus late onset Alzheimer’s disease: An SPM analysis of 120 patients [J]. Brain,2005, 128(8): 1790-1801.[17] Kono A K, Ishii K, Sofue K, et al. Fully automatic differential diagnosis system for dementia with Lewy bodies and Alzheimer’s disease using FDG-PET and 3D-SSP [J]. European Journal of Nuclear Medicine and Molecular Imaging, 2007, 34(9): 1490-1497.[18] Reiman E, Chen K, Liu X, et al. Fibrillar amyloid-β burden in cognitively normal people at 3 levels of genetic risk for Alzhimer’s disease [J]. Proceedings of the National Academy of Sciences, 2009, 106: 6820-6825.[19] Noushath S, Hemantha K G, Shivakumara P.(2D)2 LDA: An efficient approach for face recognition[J]. Pattern Recognition, 2006, 39(7): 1396-1400.[20] Zoua H, Hastiea T, Tibshirania R, et al. Sparse principal component analysis [J]. Journal of Computational and Graphical Statistics, 2006, 15(2): 265-286.[21] Wang L. Support vector machines: Theory and applications[M]. Berlin: Springer, 2005.[22] Lopez M, Ramirez J, Gorriz J, et al. Automatic tool for Alzheimer’s disease diagnosis using PCA and Bayesian classification rules [J]. Electronics Letters,2009, 45(8): 389-391.[23] Ramirez J, Gorriz J, Segovia F, et al. Computer aided diagnosis system for the Alzheimer’s disease based on partial least squares and random forest SPECT image classification [J]. Neuroscience Letters,2010, 472(2): 99-103. |