J Shanghai Jiaotong Univ Sci ›› 2025, Vol. 30 ›› Issue (1): 130-135.doi: 10.1007/s12204-023-2590-2
• Medicine-Engineering Interdisciplinary • Previous Articles Next Articles
LIU Yuchuan1 (张轶伦), LI Hao1 (徐思坤), TANG Yulong1 (徐 捷), LIANG Dujuan2 (曾学奇), TAN Jia3 (李 铮), FU Yue1 (谢 驰), LI Yongming4∗ (谢 驰)
Received:
2022-11-11
Accepted:
2022-12-01
Online:
2025-01-28
Published:
2025-01-28
CLC Number:
LIU Yuchuan1 (刘玉川), LI Hao1 (李浩), TANG Yulong1 (唐宇龙), LIANG Dujuan2 (梁杜娟), TAN Jia3 (谭佳), FU Yue1 (符玥), LI Yongming4∗ (李勇明). Brain Age Detection of Alzheimer’s Disease Magnetic Resonance Images Based on Mutual Information - Support Vector Regression[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 130-135.
[1] ZENG A, JIA L, PAN D, et al. Early prognosis of Alzheimer’s disease based on convolutional neural networks and ensemble learning [J]. Journal of Biomedical Engineering, 2019, 36(5): 711-719 (in Chinese). [2] GUAN H, TAO C, TAO D. MRI-based Alzheimer’s disease prediction via distilling the knowledge in multimodal data [J]. NeuroImage, 2021, 244: 118586. [3] TURKSON R E, QU H, MAWULI C B, et al. Classifi- cation of Alzheimer’s disease using deep convolutional spiking neural network [J]. Neural Processing Letters, 2021, 53(4): 2649-2663. [4] WU H, LUO J, LU X, et al. 3D transfer learning network for classification of Alzheimer’s disease with MRI [J]. International Journal of Machine Learning and Cybernetics, 2022, 13(7): 1997-2011. [5] ZHANG Y, TENG Q, LIU Y, et al. Diagnosis of Alzheimer’s disease based on regional attention with sMRI gray matter slices [J]. Journal of Neuroscience Methods, 2022, 365: 109376. [6] RAMZAN F, KHAN M U G, REHMAT A, et al. A deep learning approach for automated diagnosis and multi-class classification of Alzheimer’s disease stages using resting-state fMRI and residual neural networks [J]. Journal of Medical Systems, 2019, 44(2): 37. [7] LI Y, LI F, ZHU X, et al. Detection of brain age of Alzheimer’s disease based on separability distance criterion and MR image [J]. Journal of Southeast University (Natural Science Edition), 2016, 46(6): 1137-1142 (in Chinese). [8] IRIMIA A, TORGERSON C M, GOH S, et al. Statistical estimation of physiological brain age as a descriptor of senescence rate during adulthood [J]. Brain Imaging and Behavior, 2015, 9(4): 678-689. [9] SENDI M S E, SALAT D H, CALHOUN V D. Brain age gap difference between healthy and mild dementia subjects: Functional network connectivity analysis [C]//2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society. Online: IEEE, 2021: 1636-1639. [10] BEHESHTI I, MISHRA S, SONE D, et al. T1-weighted MRI-driven brain age estimation in Alzheimer’s disease and Parkinson’s disease [J]. Aging and Disease, 2020, 11(3): 618-628. [11] POLONI K M, FERRARI R J. A deep ensemble hippocampal CNN model for brain age estimation applied to Alzheimer’s diagnosis [J]. Expert Systems With Applications, 2022, 195: 116622. [12] PALMA M, TAVAKOLI S, BRETTSCHNEIDER J, et al. Quantifying uncertainty in brain-predicted age using scalar-on-image quantile regression [J]. NeuroImage, 2020, 219: 116938. [13] LY M, YU G Z, KARIM H T, et al. Improving brain age prediction models: Incorporation of amyloid status in Alzheimer’s disease [J]. Neurobiology of Aging, 2020, 87: 44-48. [14] LOWE L C, GASER C, FRANKE K, et al. The effect of the APOE genotype on individual BrainAGE in normal aging, mild cognitive impairment, and Alzheimer’s disease [J]. PLoS ONE, 2016, 11(7): e0157514. [15] NAKANO R, KOBASHI S, BINTE ALAM S, et al. Neonatal brain age estimation using manifold learning regression analysis [C]//2015 IEEE International Conference on Systems, Man, and Cybernetics. Hong Kong: IEEE, 2015: 2273-2276. [16] DAVATZIKOS C, XU F, AN Y, et al. Longitudinal progression of Alzheimer’s-like patterns of atrophy in normal older adults: The SPARE-AD index [J]. Brain, 2009, 132(8): 2026-2035. [17] GONNEAUD J, BARIA A T, PICHET BINETTE A, et al. Accelerated functional brain aging in pre-clinical familial Alzheimer’s disease [J]. Nature Communications, 2021, 12: 5346. [18] LI Y, LI F, WANG P, et al. Estimating the brain pathological age of Alzheimer’s disease patients from MR image data based on the separability distance criterion [J]. Physics in Medicine and Biology, 2016, 61(19): 7162-7186. [19] GANAIE M A, TANVEER M, BEHESHTI I. Brain age prediction using improved twin SVR [J]. Neural Computing and Applications, 2022. https://doi.org/10.1007/s00521-021-06518-1. [20] SMOLA A J, SCHOLKOPF B. A tutorial on support vector regression [J]. Statistics and Computing, 2004,14(3): 199-222. [21] YANG J, WANG S, WU T. Maximum mutual information for feature extraction from graphstructured data: Application to Alzheimer’s disease classification [J]. Applied Intelligence, 2022. https://doi.org/10.1007/s10489-022-03528-x. [22] PANINSKI L. Estimation of entropy and mutual information [J]. Neural Computation, 2003, 15(6): 1191-1253. [23] FRANKE K, ZIEGLER G, KLOPPEL S, et al. Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: Exploring the influence of various parameters [J]. NeuroImage, 2010,50(3): 883-892. |
[1] | Fu Zeyu, Fu Zhuang, Guan Yisheng. Vascular Interventional Surgery Path Planning and 3D Visual Navigation [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 472-481. |
[2] | Feng Lingdong, Miao Yubin. Intelligent Heart Rate Extraction Method Based on Millimeter Wave Radar [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 493-498. |
[3] | Duan Jizhong, Xu Yuhán, Huang Huan. Fast Parallel Magnetic Resonance Imaging Reconstruction Based on Sparsifying Transform Learning and Structured Low-Rank Model [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 499-509. |
[4] | Si Bingqi, Pang Chenxi, Wang Zhiwu, Jiang Pingping, Yan Guozheng. Real-Time Lightweight Convolutional Neural Network for Polyp Detection in Endoscope Images [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 521-534. |
[5] | Ma Ting, Wu Jianfang, Hu Feng, Nie Wei, Liu Youxin. Image Mosaic Method of Capsule Endoscopy Intestinal Wall Based on Improved Weighted Fusion [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 535-544. |
[6] | Duan Jizhong, Su Yan. Improved Sensitivity Encoding Parallel Magnetic Resonance Imaging Reconstruction Algorithm Based on Efficient Sum of Outer Products Dictionary Learning [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 555-565. |
[7] | Fan Xinggang, Liu Jiaxian, Li Chao, Yang Youdong, Gu Wenting, Jiang Xinyang. Computer Aided Diagnosis for COVID-19 in CT Images Utilizing Transfer Learning and Attention Mechanism [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 566-581. |
[8] | Duolin, Xu Boyu, Ren Yong, Yang Xin. Magnetic Resonance Imaging Reconstruction Based on Butterfly Dilated Geometric Distillation [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 591-599. |
[9] | Li Qingwei, Fu Can, Xue Wenli, Wei Yongqiang, Shen Zhiwen. Novel State of Health Estimation for Lithium-Ion Battery Based on Differential Evolution Algorithm-Extreme Learning Machine [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 252-261. |
[10] | Wang Baomin, Ding Hewei, Teng Fei, Liu Hongqin. Damage Detection of X-ray Image of Conveyor Belts with Steel Rope Cores Based on Improved FCOS Algorithm [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 309-318. |
[11] | Wang Gang, Guan Yaonan, Li Dewei. Two-Stream Auto-Encoder Network for Unsupervised Skeleton-Based Action Recognition [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 330-336. |
[12] | Diao Zijian, Cao Shuai, Li Wenwei, Liang Jianan, Wen Guilin, Huang Weixi, Zhang Shouming. Person Re-Identification Based on Spatial Feature Learning and Multi-Granularity Feature Fusion [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 363-374. |
[13] | DING Lihui1, 2(丁黎辉), FU Lijun1, 3 (付立军), YANG Guang4(杨光), WAN Lin4, 5 (万林), CHANG Zhijun7(常志军). Video-Based Detection of Epileptic Spasms in IESS: Modeling, Detection, and Evaluation [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 1-9. |
[14] | KONG Huiyang1 (孔会扬), WANG Shuyi1 (王殊轶), ZHANG Can2 (张璨), CHEN Zan2, 3 (陈赞). Augmented Reality Navigation Using Surgical Guides Versus Conventional Techniques in Pedicle Screw Placement [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 10-17. |
[15] | ZHAO Yanfei1,2,3(赵艳飞), XIAO Peng4 (肖鹏), WANG Jingchuan1,2,3* (王景川), GUO Rui4*(郭锐). Semi-Autonomous Navigation Based on Local Semantic Map for Mobile Robot [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 27-33. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||