J Shanghai Jiaotong Univ Sci ›› 2025, Vol. 30 ›› Issue (3): 591-599.doi: 10.1007/s12204-024-2701-8
• Medicine-Engineering Interdisciplinary • Previous Articles Next Articles
朵琳,许渤雨,任勇,杨新
Received:
2023-10-13
Accepted:
2023-11-03
Online:
2025-06-06
Published:
2025-06-06
[1] ZHAN Z F, CAI J F, GUO D, et al. Fast multiclass dictionaries learning with geometrical directions in MRI reconstruction [J]. IEEE Transactions on Biomedical Engineering, 2016, 63(9): 1850-1861. [2] LAI Z Y, QU X B, LIU Y S, et al. Image reconstruction of compressed sensing MRI using graph-based redundant wavelet transform [J]. Medical Image Analysis, 2016, 27: 93-104. [3] LINGALA S G, JACOB M. Blind compressive sensing dynamic MRI [J]. IEEE Transactions on Medical Imaging, 2013, 32(6): 1132-1145. [4] BLOCK K T, UECKER M, FRAHM J. Undersampled radial MRI with multiple coils. Iterative image reconstruction using a total variation constraint [J]. Magnetic Resonance in Medicine, 2007, 57(6): 1086-1098. [5] BECK A, TEBOULLE M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems [J]. SIAM Journal on Imaging Sciences, 2009, 2(1): 183-202. [6] CHAMBOLLE A, POCK T. A first-order primal-dual algorithm for convex problems with applications to imaging [J]. Journal of Mathematical Imaging and Vision, 2011, 40(1): 120-145. [7] BOYD S, PARIKH N, CHU E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers [J]. Foundations and Trends® in Machine Learning, 2011, 3(1): 1-122. [8] DATTA S, DANDAPAT S, DEKA B. A deep framework for enhancement of diagnostic information in CSMRI reconstruction [J]. Biomedical Signal Processing and Control, 2022, 71: 103117. [9] WANG S S, SU Z H, YING L, et al. Accelerating magnetic resonance imaging via deep learning [C]//2016 IEEE 13th International Symposium on Biomedical Imaging. Prague: IEEE, 2016: 514-517. [10] JIN K H, MCCANN M T, FROUSTEY E, et al. Deep convolutional neural network for inverse problems in imaging [J]. IEEE Transactions on Image Processing, 2017, 26(9): 4509-4522. [11] QUAN T M, NGUYEN-DUC T, JEONG W K. Compressed sensing MRI reconstruction using a generative adversarial network with a cyclic loss [J]. IEEE Transactions on Medical Imaging, 2018, 37(6): 1488-1497. [12] YANG G, YU S M, DONG H, et al. DAGAN: Deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction [J]. IEEE Transactions on Medical Imaging, 2018, 37(6): 1310-1321. [13] WEI H N, LI Z S, WANG S, et al. Undersampled multi-contrast MRI reconstruction based on double-domain generative adversarial network [J]. IEEE Journal of Biomedical and Health Informatics, 2022, 26(9): 4371-4377. [14] ÖZBEY M, DALMAZ O, DAR S U H, et al. Unsupervised medical image translation with adversarial diffusion models [J]. IEEE Transactions on Medical Imaging, 2023, 42(12): 3524-3539. [15] GÜNGÖR A, DAR S U, ÖZTÜRK Ş, et al. Adaptive diffusion priors for accelerated MRI reconstruction [J]. Medical Image Analysis, 2023, 88: 102872. [16] SOUZA R, FRAYNE R. A hybrid frequency-domain/image-domain deep network for magnetic resonance image reconstruction [C]//2019 32nd SIBGRAPI Conference on Graphics, Patterns and Images. Rio de Janeiro: IEEE, 2019: 257-264. [17] ZHOU B, ZHOU S K. DuDoRNet: learning a dual-domain recurrent network for fast MRI reconstruction with deep T1 prior [C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 4272-4281. [18] YANG Y, SUN J, LI H B, et al. ADMM-CSNet: A deep learning approach for image compressive sensing [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(3): 521-538. [19] ZHENG H, FANG F M, ZHANG G X. Cascaded dilated dense network with two-step data consistency for MRI reconstruction [C]// 33rd Conference on Neural Information Processing Systems. Vancouver: NIPS, 2019: 1744-1754. [20] DUAN J M, SCHLEMPER J, QIN C, et al. VS-net: Variable splitting network for accelerated parallel MRI reconstruction [M]// Medical image computing and computer assisted intervention – MICCAI 2019. Cham: Springer, 2019: 713-722. [21] SCHLEMPER J, CABALLERO J, HAJNAL J V, et al. A deep cascade of convolutional neural networks for dynamic MR image reconstruction [J]. IEEE Transactions on Medical Imaging, 2017, 37(2): 491-503. [22] ZHANG J, GHANEM B. ISTA-net: Interpretable optimization-inspired deep network for image compressive sensing [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 1828-1837. [23] LUSTIG M, DONOHO D, PAULY J M. Sparse MRI: The application of compressed sensing for rapid MR imaging [J]. Magnetic Resonance in Medicine, 2007, 58(6): 1182-1195. [24] XIANG J X, DONG Y G, YANG Y J. FISTA-net: Learning a fast iterative shrinkage thresholding network for inverse problems in imaging [J]. IEEE Transactions on Medical Imaging, 2021, 40(5): 1329-1339. [25] SINGH N M, IGLESIAS J E, ADALSTEINSSON E, et al. Joint frequency and image space learning for MRI reconstruction and analysis [J]. Machine Learning for Biomedical Imaging, 2022, 1: 1-28. [26] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module [M]// Computer vision – ECCV 2018. Cham: Springer, 2018: 3-19. [27] YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions [DB/OL]. (2015-11-23). https://arxiv.org/abs/1511.07122 [28] JIANG K, WANG Z Y, YI P, et al. Deep distillation recursive network for remote sensing imagery super-resolution [J]. Remote Sensing, 2018, 10(11): 1700. [29] BIAN W. Optimization-Based Deep learning methods for Magnetic Resonance Imaging Reconstruction and Synthesis[D]. Gainesville: University of Florida, 2022. [30] BERMÚDEZ C, REMEDIOS S, RAMADASS K, et al. Generalizing deep whole-brain segmentation for post-contrast MRI with transfer learning [J]. Journal of Medical Imaging, 2020, 7: 64004-064004. [31] KINGMA D P, BA J. Adam: A method for stochastic optimization [DB/OL]. (2014-12-22). https://arxiv.org/abs/1412.6980 [32] BERNSTEIN M A, FAIN S B, RIEDERER S J. Effect of windowing and zero-filled reconstruction of MRI data on spatial resolution and acquisition strategy [J]. Journal of Magnetic Resonance Imaging, 2001, 14(3): 270-280. [33] QU X B, GUO D, NING B D, et al. Undersampled MRI reconstruction with patch-based directional wavelets [J]. Magnetic Resonance Imaging, 2012, 30(7): 964-977. [34] QU X B, HOU Y K, LAM F, et al. Magnetic resonance image reconstruction from undersampled measurements using a patch-based nonlocal operator [J]. Medical Image Analysis, 2014, 18(6): 843-856. [35] FAN X H, YANG Y, ZHANG J P. Deep geometric distillation network for compressive sensing MRI [C]//2021 IEEE EMBS International Conference on Biomedical and Health Informatics. Athens: IEEE, 2021: 1-4. |
[1] | Fu Zeyu, Fu Zhuang, Guan Yisheng. Vascular Interventional Surgery Path Planning and 3D Visual Navigation [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 472-481. |
[2] | Feng Lingdong, Miao Yubin. Intelligent Heart Rate Extraction Method Based on Millimeter Wave Radar [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 493-498. |
[3] | Duan Jizhong, Xu Yuhán, Huang Huan. Fast Parallel Magnetic Resonance Imaging Reconstruction Based on Sparsifying Transform Learning and Structured Low-Rank Model [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 499-509. |
[4] | Si Bingqi, Pang Chenxi, Wang Zhiwu, Jiang Pingping, Yan Guozheng. Real-Time Lightweight Convolutional Neural Network for Polyp Detection in Endoscope Images [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 521-534. |
[5] | Ma Ting, Wu Jianfang, Hu Feng, Nie Wei, Liu Youxin. Image Mosaic Method of Capsule Endoscopy Intestinal Wall Based on Improved Weighted Fusion [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 535-544. |
[6] | Duan Jizhong, Su Yan. Improved Sensitivity Encoding Parallel Magnetic Resonance Imaging Reconstruction Algorithm Based on Efficient Sum of Outer Products Dictionary Learning [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 555-565. |
[7] | Fan Xinggang, Liu Jiaxian, Li Chao, Yang Youdong, Gu Wenting, Jiang Xinyang. Computer Aided Diagnosis for COVID-19 in CT Images Utilizing Transfer Learning and Attention Mechanism [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 566-581. |
[8] | Li Qingwei, Fu Can, Xue Wenli, Wei Yongqiang, Shen Zhiwen. Novel State of Health Estimation for Lithium-Ion Battery Based on Differential Evolution Algorithm-Extreme Learning Machine [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 252-261. |
[9] | Wang Baomin, Ding Hewei, Teng Fei, Liu Hongqin. Damage Detection of X-ray Image of Conveyor Belts with Steel Rope Cores Based on Improved FCOS Algorithm [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 309-318. |
[10] | Wang Gang, Guan Yaonan, Li Dewei. Two-Stream Auto-Encoder Network for Unsupervised Skeleton-Based Action Recognition [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 330-336. |
[11] | Diao Zijian, Cao Shuai, Li Wenwei, Liang Jianan, Wen Guilin, Huang Weixi, Zhang Shouming. Person Re-Identification Based on Spatial Feature Learning and Multi-Granularity Feature Fusion [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 363-374. |
[12] | DING Lihui1, 2(丁黎辉), FU Lijun1, 3 (付立军), YANG Guang4(杨光), WAN Lin4, 5 (万林), CHANG Zhijun7(常志军). Video-Based Detection of Epileptic Spasms in IESS: Modeling, Detection, and Evaluation [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 1-9. |
[13] | KONG Huiyang1 (孔会扬), WANG Shuyi1 (王殊轶), ZHANG Can2 (张璨), CHEN Zan2, 3 (陈赞). Augmented Reality Navigation Using Surgical Guides Versus Conventional Techniques in Pedicle Screw Placement [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 10-17. |
[14] | ZHAO Yanfei1,2,3(赵艳飞), XIAO Peng4 (肖鹏), WANG Jingchuan1,2,3* (王景川), GUO Rui4*(郭锐). Semi-Autonomous Navigation Based on Local Semantic Map for Mobile Robot [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 27-33. |
[15] | FU Hang1 (傅航),XU Jiangchang1 (许江长), LI Yinwei2,4* (李寅炜),ZHOU Huifang2,4 (周慧芳),CHEN Xiaojun1,3* (陈晓军). Augmented Reality Based Navigation System for Endoscopic Transnasal Optic Canal Decompression [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 34-42. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 4
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 60
|
|
|||||||||||||||||||||||||||||||||||||||||||||