J Shanghai Jiaotong Univ Sci ›› 2025, Vol. 30 ›› Issue (3): 566-581.doi: 10.1007/s12204-023-2646-3
• Medicine-Engineering Interdisciplinary • Previous Articles Next Articles
范兴刚,刘贾贤,李超,杨友东,谷文婷,姜新阳
Received:
2022-12-08
Accepted:
2022-12-30
Online:
2025-06-06
Published:
2025-06-06
[1] ISLAMI F, WARD E M, SUNG H, et al. Annual report to the nation on the status of cancer, part 1: national cancer statistics[J]. JNCI: Journal of the National Cancer Institute, 2021, 113(12): 1648-1669. [2] CRESSMAN S, PEACOCK S J, TAMMEMÄGI M C, et al. The cost-effectiveness of high-risk lung cancer screening and drivers of program efficiency [J]. Journal of Thoracic Oncology, 2017, 12(8): 1210-1222. [3] FIELD J K, VULKAN D, DAVIES M P A, et al. Lung cancer mortality reduction by LDCT screening: UKLS randomised trial results and international meta-analysis [J]. The Lancet Regional Health Europe, 2021, 10: 100179. [4] OKTAY O, SCHLEMPER J, LE FOLGOC L, et al. Attention U-net: Learning where to look for the pancreas [DB/OL]. (2018-04-11). https://arxiv.org/abs/1804.03999 [5] SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651. [6] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks [J]. Communications of the ACM, 2017, 60(6): 84-90. [7] RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation[M]// Medical image computing and computer-assisted intervention – MICCAI 2015. Cham: Springer, 2015: 234-241. [8] PAN S J, YANG Q. A survey on transfer learning [J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 1345-1359. [9] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[M]// Computer vision – ECCV 2018. Cham: Springer, 2018: 3-19. [10] BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495. [11] SIDDIQUE N, PAHEDING S, ELKIN C P, et al. U-net and its variants for medical image segmentation: A review of theory and applications [J]. IEEE Access, 2021, 9: 82031-82057. [12] CHENG D, LAM E Y. Transfer learning U-net deep learning for lung ultrasound segmentation [DB/OL]. (2021-10-05). https://arxiv.org/abs/2110.02196 [13] YIN J T, LI J W, HUANG Q H, et al. Ultrasonographic segmentation of fetal lung with deep learning [J]. Journal of Biosciences and Medicines, 2021, 9(1): 146-153. [14] PETIT O, THOME N, RAMBOUR C, et al. U-net transformer: Self and cross attention for medical image segmentation[M]// Machine learning in medical imaging. Cham: Springer, 2021: 267-276. [15] HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023. [16] JADERBERG M, SIMONYAN K, ZISSERMAN A, et al. Spatial transformer networks [DB/OL]. (2015-06-05). https://arxiv.org/abs/1506.02025 [17] AMIRI M, BROOKS R, RIVAZ H. Fine-tuning U-net for ultrasound image segmentation: Different layers, different outcomes [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67(12): 2510-2518. [18] TAJBAKHSH N, SHIN J Y, GURUDU S R, et al. Convolutional neural networks for medical image analysis: Full training or fine tuning? [J]. IEEE Transactions on Medical Imaging, 2016, 35(5): 1299-1312. [19] PRAKASH R M, THENMOEZHI N, GAYATHRI M. Face recognition with convolutional neural network and transfer learning [C]//2019 International Conference on Smart Systems and Inventive Technology. Tirunelveli: IEEE, 2019: 861-864. [20] MA J, WANG Y X, AN X L, et al. Toward data-efficient learning: A benchmark for COVID-19 CT lung and infection segmentation [J]. Medical Physics, 2021, 48(3): 1197-1210. [21] XIA C Q, LI J, CHEN X W, et al. What is and What is Not a Salient Object? Learning Salient Object Detector by Ensembling Linear Exemplar Regressors [C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 4399-4407. [22] XIE Y T, RICHMOND D. Pre-training on grayscale ImageNet improves medical image classification[M]// Computer vision – ECCV 2018 workshops. Cham: Springer, 2019: 476-484. [23] ZOU K H, WARFIELD S K, BHARATHA A, et al. Statistical validation of image segmentation quality based on a spatial overlap index 1 [J]. Academic Radiology, 2004, 11(2): 178-189. [24] IANDOLA F N, HAN S, MOSKEWICZ M W, et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size [DB/OL]. (2016-02-24). https://arxiv.org/abs/1602.07360 [25] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778. [26] JOSEPH RAJ A N, ZHU H P, KHAN A, et al. ADID-UNET—a segmentation model for COVID-19 infection from lung CT scans [J]. PeerJ Computer Science, 2021, 7: e349. |
[1] | Fu Zeyu, Fu Zhuang, Guan Yisheng. Vascular Interventional Surgery Path Planning and 3D Visual Navigation [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 472-481. |
[2] | Feng Lingdong, Miao Yubin. Intelligent Heart Rate Extraction Method Based on Millimeter Wave Radar [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 493-498. |
[3] | Duan Jizhong, Xu Yuhán, Huang Huan. Fast Parallel Magnetic Resonance Imaging Reconstruction Based on Sparsifying Transform Learning and Structured Low-Rank Model [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 499-509. |
[4] | Si Bingqi, Pang Chenxi, Wang Zhiwu, Jiang Pingping, Yan Guozheng. Real-Time Lightweight Convolutional Neural Network for Polyp Detection in Endoscope Images [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 521-534. |
[5] | Ma Ting, Wu Jianfang, Hu Feng, Nie Wei, Liu Youxin. Image Mosaic Method of Capsule Endoscopy Intestinal Wall Based on Improved Weighted Fusion [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 535-544. |
[6] | Duan Jizhong, Su Yan. Improved Sensitivity Encoding Parallel Magnetic Resonance Imaging Reconstruction Algorithm Based on Efficient Sum of Outer Products Dictionary Learning [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 555-565. |
[7] | Li Qingwei, Fu Can, Xue Wenli, Wei Yongqiang, Shen Zhiwen. Novel State of Health Estimation for Lithium-Ion Battery Based on Differential Evolution Algorithm-Extreme Learning Machine [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 252-261. |
[8] | Wang Baomin, Ding Hewei, Teng Fei, Liu Hongqin. Damage Detection of X-ray Image of Conveyor Belts with Steel Rope Cores Based on Improved FCOS Algorithm [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 309-318. |
[9] | Wang Gang, Guan Yaonan, Li Dewei. Two-Stream Auto-Encoder Network for Unsupervised Skeleton-Based Action Recognition [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 330-336. |
[10] | Diao Zijian, Cao Shuai, Li Wenwei, Liang Jianan, Wen Guilin, Huang Weixi, Zhang Shouming. Person Re-Identification Based on Spatial Feature Learning and Multi-Granularity Feature Fusion [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 363-374. |
[11] | ZHAO Yanfei1,2,3(赵艳飞), XIAO Peng4 (肖鹏), WANG Jingchuan1,2,3* (王景川), GUO Rui4*(郭锐). Semi-Autonomous Navigation Based on Local Semantic Map for Mobile Robot [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 27-33. |
[12] | FU Hang1 (傅航),XU Jiangchang1 (许江长), LI Yinwei2,4* (李寅炜),ZHOU Huifang2,4 (周慧芳),CHEN Xiaojun1,3* (陈晓军). Augmented Reality Based Navigation System for Endoscopic Transnasal Optic Canal Decompression [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 34-42. |
[13] | BALASUBRAMANIAN S1*, NARUKA Mahaveer Singh2, TEWARI Gaurav3. Electrocardiogram Signal Denoising Using Optimized Adaptive Hybrid Filter with Empirical Wavelet Transform [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 66-80. |
[14] | XU Wangwang1,2 (徐旺旺), XU Liangfeng1,2 (许良凤), LIU Ninghui3(刘宁徽), LU Na3(律娜). Histological Image Diagnosis of Breast Cancer Based on Multi-Attention Convolution Neural Network [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 91-106. |
[15] | A. Sahaya Anselin Nisha1* , NARMADHA R.1 , AMIRTHALAKSHMI T. M.2,BALAMURUGAN V.1, VEDANARAYANAN V.1. LOBO Optimization-Tuned Deep-Convolutional Neural Network for Brain Tumor Classification Approach [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 107-114. |
Viewed | ||||||
Full text 0
|
|
|||||
Abstract |
|
|||||