J Shanghai Jiaotong Univ Sci ›› 2025, Vol. 30 ›› Issue (3): 521-534.doi: 10.1007/s12204-023-2671-2
• Medicine-Engineering Interdisciplinary • Previous Articles Next Articles
司丙奇1,2,逄晨曦3,王志武1,2,姜萍萍1,2,颜国正1,2
Received:
2022-11-14
Accepted:
2023-02-27
Online:
2025-06-06
Published:
2025-06-06
[1] THANIKACHALAM K, KHAN G. Colorectal cancer and nutrition [J]. Nutrients, 2019, 11(1): 164. [2] SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J]. CA: A Cancer Journal for Clinicians, 2021, 71(3): 209-249. [3] BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J]. CA: A Cancer Journal for Clinicians, 2018, 68(6): 394-424. [4] SIMON K. Colorectal cancer development and advances in screening [J]. Clinical Interventions in Aging, 2016, 11: 967-976. [5] LOEVE F, BOER R, ZAUBER A G, et al. National polyp study data: Evidence for regression of adenomas [J]. International Journal of Cancer, 2004, 111(4): 633-639. [6] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector [M]//European conference on computer vision. Amsterdam: Springer, 2016: 21-37. [7] BURLING D, International Collaboration for CT Colonography Standards. CT colonography standards [J]. Clinical Radiology, 2010, 65(6): 474-480. [8] COX B F, STEWART F, LAY H, et al. Ultrasound capsule endoscopy: Sounding out the future [J]. Annals of Translational Medicine, 2017, 5(9): 201. [9] SIEGEL R L, MILLER K D, FEDEWA S A, et al. Colorectal cancer statistics, 2017 [J]. CA: A Cancer Journal for Clinicians, 2017, 67(3): 177-193. [10] GUO Z, ZHANG R Y, LI Q, et al. Reduce falsepositive rate by active learning for automatic polyp detection in colonoscopy videos [C]//2020 IEEE 17th International Symposium on Biomedical Imaging. Iowa City: IEEE, 2020: 1655-1658. [11] NOGUEIRA-RODR´IGUEZ A, DOM´INGUEZCARBAJALES R, CAMPOS-TATO F, et al. Real-time polyp detection model using convolutional neural networks [J]. Neural Computing and Applications, 2022, 34(13): 10375-10396. [12] SONG E M, PARK B, HA C A, et al. Endoscopic diagnosis and treatment planning for colorectal polyps using a deep-learning model [J]. Scientific Reports, 2020, 10: 30. [13] XU JW, ZHAO R, YU Y Z, et al. Real-time automatic polyp detection in colonoscopy using feature enhancement module and spatiotemporal similarity correlation unit [J]. Biomedical Signal Processing and Control, 2021, 66: 102503. [14] CAO C T, WANG R L, YU Y, et al. Gastric polyp detection in gastroscopic images using deep neural network [J]. PLoS One, 2021, 16(4): e0250632. [15] CHEN B L, WAN J J, CHEN T Y, et al. A selfattention based faster R-CNN for polyp detection from colonoscopy images [J]. Biomedical Signal Processing and Control, 2021, 70: 103019. [16] QIAN Z Q, JING W J, LV Y, et al. Automatic polyp detection by combining conditional generative adversarial network and modified you-only-look-once [J]. IEEE Sensors Journal, 2022, 22(11): 10841-10849. [17] PASCUAL G, LAIZ P, GARC ´ IA A, et al. Timebased self-supervised learning forWireless Capsule Endoscopy [J]. Computers in Biology and Medicine, 2022, 146: 105631. [18] PACAL I, KARABOGA D. A robust real-time deep learning based automatic polyp detection system [J]. Computers in Biology and Medicine, 2021, 134: 104519. [19] PACAL I, KARAMAN A, KARABOGA D, et al. An efficient real-time colonic polyp detection with YOLO algorithms trained by using negative samples and large datasets [J]. Computers in Biology and Medicine, 2022, 141: 105031. [20] WANG C Y, MARK LIAO H Y, WU Y H, et al. CSPNet: A new backbone that can enhance learning capability of CNN [C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Seattle: IEEE, 2020: 1571-1580. [21] HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. [22] LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 8759-8768. [23] TAN M X, LE Q V. EfficientNet: Rethinking model scaling for convolutional neural networks [DB/OL]. (2019-05-28). https://arxiv.org/abs/1905.11946 [24] LIU R. Higher accuracy on vision models with EfficientNet-Lite. TensorFlow Blog [EB/OL]. (2020- 03-16). https://blog.tensorflow.org/2020/03/higheraccuracy- on-vision-models-with-efficientnet-lite.html? continueFlag=fc4c98f37325a2fd6989afa002d20bec [25] HE J B, ERFANI S, MA X J, et al. Alpha-IoU: A family of power intersection over union losses for bounding box regression [DB/OL]. (2021-10-26). https://arxiv.org/abs/2110.13675 [26] BOX G E P, COX D R. An analysis of transformations [J]. Journal of the Royal Statistical Society: Series B (Methodological ), 1964, 26(2): 211-243. [27] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module [M]//Computer vision– ECCV 2018. Munich: Springer, 2018: 3-19. [28] HU J, SHEN L, SUN G. Squeeze-and-excitation networks [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132-7141. [29] WANG Q L, WU B G, ZHU P F, et al. ECA-net: Efficient channel attention for deep convolutional neural networks [C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 11531-11539. [30] HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design [C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 13708-13717. [31] IOFFE S, SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift [C]//Proceedings of the 32nd International Conference on International Conference on Machine Learning-Volume 37. New York: ACM, 2015: 448-456. [32] ODAGAWA M. Implementation of real-time computer-aided diagnosis system with quantitative staging and navigation on customizable embedded digital signal processor [D]. Hiroshima: Hiroshima University, 2021 (in Japanese). [33] KRENZER A, BANCK M, MAKOWSKI K, et al. A real-time polyp-detection system with clinical application in colonoscopy using deep convolutional neural networks [J]. Journal of Imaging, 2023, 9(2): 26. [34] BERNAL J, TAJKBAKSH N, SANCHEZ F J, et al. Comparative validation of polyp detection methods in video colonoscopy: Results from the MICCAI 2015 endoscopic vision challenge [J]. IEEE Transactions on Medical Imaging, 2017, 36(6): 1231-1249. [35] MESEJO P, PIZARRO D, ABERGEL A, et al. Computer-aided classification of gastrointestinal lesions in regular colonoscopy [J]. IEEE Transactions on Medical Imaging, 2016, 35(9): 2051-2063. [36] BORGLI H, THAMBAWITA V, SMEDSRUD P H, et al. HyperKvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy [J]. Scientific Data, 2020, 7: 283. [37] JHA D, SMEDSRUD P H, RIEGLER M A, et al. Kvasir-SEG: A segmented polyp dataset [C]//International Conference on Multimedia Modeling. Daejeon: Springer, 2020: 451-462. [38] YANG Y J. The future of capsule endoscopy: The role of artificial intelligence and other technical advancements [J]. Clinical Endoscopy, 2020, 53(4): 387-394. [39] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. Scaled-YOLOv4: Scaling cross stage partial network [C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 13024-13033. [40] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: Trainable bag-of-freebies sets new state-ofthe- art for real-time object detectors [DB/OL]. (2022- 07-06). https://arxiv.org/abs/2207.02696 [41] GE Z, LIU S T, WANG F, et al. YOLOX: Exceeding YOLO series in 2021 [DB/OL]. (2021-07-18). https://arxiv.org/abs/2107.08430 [42] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection [C]//2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2999-3007. [43] REN S Q, HE K M, GIRSHICK R, et al. Faster RCNN: Towards real-time object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137- 1149. [44] HOWARD A, SANDLERM, CHEN B, et al. Searching for MobileNetV3 [C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 1314-1324. [45] ZHANG X Y, ZHOU X Y, LIN M X, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 6848-6856. [46] HAN K, WANG Y H, TIAN Q, et al. GhostNet: more features from cheap operations [C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 1577-1586. [47] TAN M X, LE Q V. EfficientNet: Rethinking model scaling for convolutional neural networks [DB/OL]. (2019-05-28). https://arxiv.org/abs/1905.11946 [48] IANDOLA F N, HAN S, MOSKEWICZ M W, et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size [DB/OL]. (2016- 02-24). https://arxiv.org/abs/1602.07360 [49] JOCHER G, STOKEN A, BOROVEC J, et al. Ultralytics/ yolov5: v5.0-YOLOv5-P6 1280 models, AWS, Supervise.ly and YouTube integrations [EB/OL]. (2021-04-11). https://zenodo.org/records/4679653
|
[1] | Fu Zeyu, Fu Zhuang, Guan Yisheng. Vascular Interventional Surgery Path Planning and 3D Visual Navigation [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 472-481. |
[2] | Feng Lingdong, Miao Yubin. Intelligent Heart Rate Extraction Method Based on Millimeter Wave Radar [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 493-498. |
[3] | Duan Jizhong, Xu Yuhán, Huang Huan. Fast Parallel Magnetic Resonance Imaging Reconstruction Based on Sparsifying Transform Learning and Structured Low-Rank Model [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 499-509. |
[4] | Ma Ting, Wu Jianfang, Hu Feng, Nie Wei, Liu Youxin. Image Mosaic Method of Capsule Endoscopy Intestinal Wall Based on Improved Weighted Fusion [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 535-544. |
[5] | Duan Jizhong, Su Yan. Improved Sensitivity Encoding Parallel Magnetic Resonance Imaging Reconstruction Algorithm Based on Efficient Sum of Outer Products Dictionary Learning [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 555-565. |
[6] | Fan Xinggang, Liu Jiaxian, Li Chao, Yang Youdong, Gu Wenting, Jiang Xinyang. Computer Aided Diagnosis for COVID-19 in CT Images Utilizing Transfer Learning and Attention Mechanism [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 566-581. |
[7] | Duolin, Xu Boyu, Ren Yong, Yang Xin. Magnetic Resonance Imaging Reconstruction Based on Butterfly Dilated Geometric Distillation [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 591-599. |
[8] | Li Qingwei, Fu Can, Xue Wenli, Wei Yongqiang, Shen Zhiwen. Novel State of Health Estimation for Lithium-Ion Battery Based on Differential Evolution Algorithm-Extreme Learning Machine [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 252-261. |
[9] | Wang Baomin, Ding Hewei, Teng Fei, Liu Hongqin. Damage Detection of X-ray Image of Conveyor Belts with Steel Rope Cores Based on Improved FCOS Algorithm [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 309-318. |
[10] | Wang Gang, Guan Yaonan, Li Dewei. Two-Stream Auto-Encoder Network for Unsupervised Skeleton-Based Action Recognition [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 330-336. |
[11] | Diao Zijian, Cao Shuai, Li Wenwei, Liang Jianan, Wen Guilin, Huang Weixi, Zhang Shouming. Person Re-Identification Based on Spatial Feature Learning and Multi-Granularity Feature Fusion [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 363-374. |
[12] | DING Lihui1, 2(丁黎辉), FU Lijun1, 3 (付立军), YANG Guang4(杨光), WAN Lin4, 5 (万林), CHANG Zhijun7(常志军). Video-Based Detection of Epileptic Spasms in IESS: Modeling, Detection, and Evaluation [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 1-9. |
[13] | KONG Huiyang1 (孔会扬), WANG Shuyi1 (王殊轶), ZHANG Can2 (张璨), CHEN Zan2, 3 (陈赞). Augmented Reality Navigation Using Surgical Guides Versus Conventional Techniques in Pedicle Screw Placement [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 10-17. |
[14] | ZHAO Yanfei1,2,3(赵艳飞), XIAO Peng4 (肖鹏), WANG Jingchuan1,2,3* (王景川), GUO Rui4*(郭锐). Semi-Autonomous Navigation Based on Local Semantic Map for Mobile Robot [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 27-33. |
[15] | FU Hang1 (傅航),XU Jiangchang1 (许江长), LI Yinwei2,4* (李寅炜),ZHOU Huifang2,4 (周慧芳),CHEN Xiaojun1,3* (陈晓军). Augmented Reality Based Navigation System for Endoscopic Transnasal Optic Canal Decompression [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 34-42. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 2
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 37
|
|
|||||||||||||||||||||||||||||||||||||||||||||