Journal of Shanghai Jiao Tong University ›› 2024, Vol. 58 ›› Issue (11): 1724-1734.doi: 10.16183/j.cnki.jsjtu.2023.020
• Naval Architecture, Ocean and Civil Engineering • Previous Articles Next Articles
HE Wen1, GAO Bin1, WANG Qiangqiang2, FENG Shaokong1, YE Guanlin1()
Received:
2023-01-18
Revised:
2023-03-11
Accepted:
2023-03-14
Online:
2024-11-28
Published:
2024-12-02
CLC Number:
HE Wen, GAO Bin, WANG Qiangqiang, FENG Shaokong, YE Guanlin. A Comprehensive Geophysical Prospection Method Based on Gaussian Mixture Clustering and its Application in Karst Exploration[J]. Journal of Shanghai Jiao Tong University, 2024, 58(11): 1724-1734.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2023.020
[1] | FORD D, WILLIAMS P W. Karst hydrogeology and geomorphology[M]. Chichester, England: John Wiley & Sons, 2007. |
[2] | 黄毓铭, 张晓峰, 谢尚平, 等. 综合物探方法在南宁地铁溶洞探测中的应用[J]. 地球物理学进展, 2017, 32(3): 1352-1359. |
HUANG Yuming, ZHANG Xiaofeng, XIE Shangping, et al. Application of integrated geophysical method to Karst cave exploration of metro engineering in Nanning[J]. Progress in Geophysics, 2017, 32(3): 1352-1359. | |
[3] | 雷旭友, 李正文, 折京平. 超高密度电阻率法在土洞、煤窑采空区和岩溶勘探中应用研究[J]. 地球物理学进展, 2009, 24(1): 340-347. |
LEI Xuyou, LI Zhengwen, ZHE Jingping. Applications and research of the high resolution resistivity method in explovation of caves, mined regions and Karst region[J]. Progress in Geophysics, 2009, 24(1): 340-347. | |
[4] | 何禹, 李永涛, 朱亚军. 钻孔电磁波CT技术在深部岩溶勘探中的应用[J]. 工程地球物理学报, 2010, 7(4): 451-455. |
HE Yu, LI Yongtao, ZHU Yajun. Application of drilling electromagnetic CT to deep cavern and fracture prospecting[J]. Chinese Journal of Engineering Geophysics, 2010, 7(4): 451-455. | |
[5] | 柴明锐, 程丹, 张昌民, 等. 机器学习方法对砂砾岩岩屑成分的预测: 以西北缘X723井百口泉组为例[J]. 西安石油大学学报(自然科学版), 2017, 32(5): 22-28. |
CHAI Mingrui, CHENG Dan, ZHANG Changmin, et al. Prediction of debris composition in glutenite by machine learning method: A case study in baikouquan formation of well X723 in the NW margin of Junggar Basin[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2017, 32(5): 22-28. | |
[6] | LIU M Y, YANG J, ZHENG W, et al. Using novel complex-efficient FastICA blind deconvolution method for urban water pipe leak localization in the presence of branch noise[J]. Journal of Water Resources Planning and Management, 2021, 147(10): 04021072. |
[7] | 干磊, 何东博, 郭建林, 等. 机器学习方法在储层分类中的应用[J]. 数学的实践与认识, 2019, 49(13): 138-144. |
GAN Lei, HE Dongbo, GUO Jianlin, et al. Application of machine learning method in reservoir classification[J]. Mathematics in Practice and Theory, 2019, 49(13): 138-144. | |
[8] | CHOU J S, TSAI C F, PHAM A D, et al. Machine learning in concrete strength simulations: Multi-nation data analytics[J]. Construction and Building Materials, 2014, 73: 771-780. |
[9] | GUI G Q, PAN H, LIN Z B, et al. Data-driven support vector machine with optimization techniques for structural health monitoring and damage detection[J]. KSCE Journal of Civil Engineering, 2017, 21(2): 523-534. |
[10] | AZIMI M, ESLAMLOU A D, PEKCAN G. Data-driven structural health monitoring and damage detection through deep learning: State-of-the-art review[J]. Sensors (Basel, Switzerland), 2020, 20(10): 2778. |
[11] | PATHIRAGE C S N, LI J, LI L, et al. Structural damage identification based on autoencoder neural networks and deep learning[J]. Engineering Structures, 2018, 172: 13-28. |
[12] | 周永章, 陈烁, 张旗, 等. 大数据与数学地球科学研究进展: 大数据与数学地球科学专题代序[J]. 岩石学报, 2018, 34(2): 255-263. |
ZHOU Yongzhang, CHEN Shuo, ZHANG Qi, et al. Advances and prospects of big data and mathematical geoscience[J]. Acta Petrologica Sinica, 2018, 34(2): 255-263. | |
[13] | KUANG L C, LIU H, REN Y L, et al. Application and development trend of artificial intelligence in petroleum exploration and development[J]. Petroleum Exploration and Development, 2021, 48(1): 1-14. |
[14] | KUBOTA L, REINERT D. Machine learning forecasts oil rate in mature onshore field jointly driven by water and steam injection[C]//SPE Annual Technical Conference and Exhibition. Calgary, Alberta, Canada: SPE, 2019: D021S020R003. |
[15] | SHAHKARAMI A, MOHAGHEGH S. Applications of smart proxies for subsurface modeling[J]. Petroleum Exploration and Development, 2020, 47(2): 400-412. |
[16] | ARTUN E, KULGA B. Selection of candidate wells for re-fracturing in tight gas sand reservoirs using fuzzy inference[J]. Petroleum Exploration and Development, 2020, 47(2): 413-420. |
[17] | 李希元, 崔健, 胡望水, 等. 基于多源地球物理数据的机器学习方法在地质体分类中的应用: 以黑龙江多宝山矿集区为例[J]. 地球物理学报, 2022, 65(9): 3634-3649. |
LI Xiyuan, CUI Jian, HU Wangshui, et al. Application of machine learning method based on multi-source geophysical data to geological body classification—A case study of Duobaoshan ore concentration area (Heilongjiang, China)[J]. Chinese Journal of Geophysics, 2022, 65(9): 3634-3649. | |
[18] | ABUBAKAR A. Machine learning for geoscience applications[C]//81st EAGE Conference and Exhibition 2019 Workshop Programme. London, UK: European Association of Geoscientists & Engineers, 2019: 1. |
[19] | FOWLER J, STROBEL J. Scaling well log interpretation for faster results with AI[C]//First EAGE Digitalization Conference and Exhibition. Vienna, Austria: European Association of Geoscientists & Engineers, 2020: 1-5. |
[20] | 胡琪鑫, 徐亚. 地球物理信号特征识别与解释的机器学习方法及应用综述[J]. 地球物理学进展, 2022, 37(6): 2395-2407. |
HU Qixin, XU Ya. Review of machine learning and application of geophysical signal feature recognition and interpretation[J]. Progress in Geophysics, 2022, 37(6): 2395-2407. | |
[21] | FAHAD A, ALSHATRI N, TARI Z, et al. A survey of clustering algorithms for big data: Taxonomy and empirical analysis[J]. IEEE Transactions on Emerging Topics in Computing, 2014, 2(3): 267-279. |
[22] | NGUYEN T T T, ARMITAGE G. A survey of techniques for Internet traffic classification using machine learning[J]. IEEE Communications Surveys & Tutorials, 2008, 10(4): 56-76. |
[23] | KANUNGO T, MOUNT D M, NETANYAHU N S, et al. An efficient k-means clustering algorithm: Analysis and implementation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 881-892. |
[24] | 何清, 李宁, 罗文娟, 等. 大数据下的机器学习算法综述[J]. 模式识别与人工智能, 2014, 27(4): 327-336. |
HE Qing, LI Ning, LUO Wenjuan, et al. A survey of machine learning algorithms for big data[J]. Pattern Recognition and Artificial Intelligence, 2014, 27(4): 327-336. | |
[25] | 王元卓, 靳小龙, 程学旗. 网络大数据: 现状与展望[J]. 计算机学报, 2013, 36(6): 1125-1138. |
WANG Yuanzhuo, JIN Xiaolong, CHENG Xueqi. Network big data: Present and future[J]. Chinese Journal of Computers, 2013, 36(6): 1125-1138. | |
[26] | 王光宏, 蒋平. 数据挖掘综述[J]. 同济大学学报(自然科学版), 2004, 32(2): 246-252. |
WANG Guanghong, JIANG Ping. Survey of data mining[J]. Journal of Tongji University, 2004, 32(2): 246-252. | |
[27] | 王千年, 车爱兰, 冯少孔, 等. 高密度面波法在堆石体结构密实度检测中的应用[J]. 上海交通大学学报, 2013, 47(10): 1574-1579. |
WANG Qiannian, CHE Ailan, FENG Shaokong, et al. Application of high-density Rayleigh-wave exploration to evaluaton of rockfill density[J]. Journal of Shanghai Jiao Tong University, 2013, 47(10): 1574-1579. | |
[28] | 刘红帅, 郑桐, 齐文浩, 等. 常规土类剪切波速与埋深的关系分析[J]. 岩土工程学报, 2010, 32(7): 1142-1149. |
LIU Hongshuai, ZHENG Tong, QI Wenhao, et al. Relationship between shear wave velocity and depth of conventional soils[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(7): 1142-1149. | |
[29] | 高印立, 阎澍旺, 王金英. 剪切波速与土性指标间的统计关系[J]. 建筑科学, 1998, 14(5): 20-22. |
GAO Yinli, YAN Shuwang, WANG Jinying. The statistical relation of shear velocity with soil properties[J]. Building Science, 1998, 14(5): 20-22. | |
[30] | 刘国华, 王振宇, 黄建平. 土的电阻率特性及其工程应用研究[J]. 岩土工程学报, 2004, 26(1): 83-87. |
LIU Guohua, WANG Zhenyu, HUANG Jianping. Research on electrical resistivity feature of soil and it’s application[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(1): 83-87. |
[1] | LIU Yuesheng (刘月笙), HE Ning∗ (贺宁), HE Lile (贺利乐),ZHANG Yiwen (张译文), XI Kun (习坤), ZHANG Mengrui (张梦芮). Self-Tuning of MPC Controller for Mobile Robot Path Tracking Based on Machine Learning [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 1028-1036. |
[2] | SUN Qianyang, ZHOU Li, DING Shifeng, LIU Renwei, DING Yi. An Artificial Neural Network-Based Method for Prediction of Ice Resistance of Polar Ships [J]. Journal of Shanghai Jiao Tong University, 2024, 58(2): 156-165. |
[3] | BAO Zhujie, LI Zhen, WANG Feiliang, PANG Bo, YANG Jian. Prediction of Slip and Torsion Performance of Right-Angle Fasteners Based on Machine Learning Methods [J]. Journal of Shanghai Jiao Tong University, 2024, 58(2): 242-252. |
[4] | XU Changjie, LI Xinyu. Lateral Deformation Prediction of Deep Foundation Retaining Structures Based on Artificial Neural Network [J]. Journal of Shanghai Jiao Tong University, 2024, 58(11): 1735-1744. |
[5] | LI Mingai1,2,3∗ (李明爱), XU Dongqin1 (许东芹). Transfer Learning in Motor Imagery Brain Computer Interface: A Review [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(1): 37-59. |
[6] | SU Hongjia, LUO Yucheng, LIU Fei. Review of Equipment Effectiveness Evaluation and Supporting Technologies [J]. Air & Space Defense, 2023, 6(3): 29-38. |
[7] | SUN Jie, LI Zihao, ZHANG Shuyu. Application of Machine Learning in Chemical Synthesis and Characterization [J]. Journal of Shanghai Jiao Tong University, 2023, 57(10): 1231-1244. |
[8] | GAN Ezhong, LIU Yan, WANG Hairong, WANG Chengguang. Research on Comprehensive Tradeoff of Supportability Based on Machine Learning Performance Measurement Theory [J]. Air & Space Defense, 2023, 6(1): 38-44. |
[9] | DU Jian1∗ (杜 剑), ZHAO Xu2 (赵 旭), GUO Liming2 (郭力铭), WANG Jun2 (王 军). Machine Learning-Based Approach to Liner Shipping Schedule Design [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(3): 411-423. |
[10] | LIANG Liang1 (梁 良), SHI Ying1∗ (石 英), MOU Junmin2∗ (牟军敏). Submarine Multi-Model Switching Control Under Full Working Condition Based on Machine Learning [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(3): 402-410. |
[11] | JIA Dao, CHEN Lei, ZHU Zhipeng, YU Yao, CHI Dejian. Application of Machine Learning in Fuze- Warhead System Design [J]. Air & Space Defense, 2022, 5(2): 27-31. |
[12] | WANG Zhuoxin, ZHAO Haitao, XIE Yuehan, REN Hantao, YUAN Mingqing, ZHANG Boming, CHEN Ji’an. Prediction of Modulus of Composite Materials by BP Neural Network Optimized by Genetic Algorithm [J]. Journal of Shanghai Jiao Tong University, 2022, 56(10): 1341-1348. |
[13] | XIA Ming (夏明), XU Tianyi (徐天意), JIANG Hong∗ (姜虹). Progress and Perspective of Artificial Intelligence and Machine Learning of Prediction in Anesthesiology [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 112-120. |
[14] | ZHOU Yi, QIN Kangping, SUN Jinwen, FAN Dongqi, ZHENG Yiming. Real-Time Risk Evaluation Method of Power System Equipment and N-m Fault Contingency Plan Generation Under Typhoon Meteorological Environment [J]. Journal of Shanghai Jiao Tong University, 2021, 55(S2): 22-30. |
[15] | HE Xiawei, CAI Yunze, YAN Lingling. A Combined Residual Detection Method of Reaction Wheel for Fault Detection [J]. Journal of Shanghai Jiao Tong University, 2021, 55(6): 716-728. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||