Journal of Shanghai Jiao Tong University ›› 2023, Vol. 57 ›› Issue (10): 1316-1328.doi: 10.16183/j.cnki.jsjtu.2022.202
Special Issue: 《上海交通大学学报》2023年“机械与动力工程”专题
• Mechanical Engineering • Previous Articles Next Articles
BAI Xiongfei1, GONG Shuicheng1, LI Xuesong1,3(), XU Bo2, YANG Xiaoli3, WANG Mingyan3
Received:
2022-05-31
Revised:
2022-08-04
Accepted:
2022-08-26
Online:
2023-10-28
Published:
2023-10-31
Contact:
LI Xuesong
E-mail:xuesonl@sjtu.edu.cn
CLC Number:
BAI Xiongfei, GONG Shuicheng, LI Xuesong, XU Bo, YANG Xiaoli, WANG Mingyan. Defect Classification of Weld Metallographic Structure Based on Data Augmentation of Poisson Fusion[J]. Journal of Shanghai Jiao Tong University, 2023, 57(10): 1316-1328.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2022.202
Tab.7
Result of ablation experiment%
类型 | 模型 | 准确度 | ||||
---|---|---|---|---|---|---|
Baseline | ResNet18 | 85.31 | 77.39 | 80.92 | 95.30 | 84.54 |
结构改进 | + ISPP | 93.67(+8.36) | 93.01(+15.62) | 90.02(+9.10) | 97.68(+2.38) | 93.57(+9.03) |
+LDPS | 96.37(+11.06) | 95.97(+18.58) | 94.72(+13.80) | 97.49(+2.19) | 96.06(+11.52) | |
+ ISPP +LDPS (ResNet18_PRO) | 97.34(+12.03) | 96.19(+18.83) | 96.24(+15.32) | 98.57(+3.27) | 97.00(+12.46) | |
策略改进 | ResNet18 +ELR | 96.56(+11.25) | 96.91(+19.52) | 94.57(+13.65) | 97.61(+2.31) | 96.36(+11.82) |
ResNet18_PRO+ELR | 98.83(+13.52) | 98.88(+21.49) | 97.96(+17.04) | 99.45(+4.15) | 98.76(+14.22) |
[1] | 周正干, 滕升华, 江巍, 等. 焊缝X射线检测及其结果的评判方法综述[J]. 焊接学报, 2002, 23(3): 85-88. |
ZHOU Zhenggan, TENG Shenghua, JIANG Wei, et al. Research on defect detection and evaluation in WeldS with X-rays[J]. Transactions of the China Welding Institution, 2002, 23(3): 85-88. | |
[2] | 邵中华. X射线焊缝数字图像的缺陷提取技术研究[D]. 太原: 中北大学, 2011. |
SHAO Zhonghua. Research on extraction technology of weld defects in X-ray image[D]. Taiyuan: North University of China, 2011. | |
[3] | 王思宇, 高炜欣, 张翔松. X射线焊缝图像缺陷检测算法综述[J]. 热加工工艺, 2020, 49(15): 1-8. |
WANG Siyu, GAO Weixin, ZHANG Xiangsong. Summary of defect detection algorithms for X-ray weld image[J]. Hot Working Technology, 2020, 49(15): 1-8. | |
[4] | 胡丹, 高向东, 张南峰, 等. 焊缝缺陷检测现状与展望综述[J]. 机电工程, 2020, 37(7): 736-742. |
HU Dan, GAO Xiangdong, ZHANG Nanfeng, et al. Review of status and prospect of weld defect detection[J]. Journal of Mechanical & Electrical Engineering, 2020, 37(7): 736-742. | |
[5] | 刘玉宗. 焊丝种类对6082-T6铝合金激光-电弧复合焊接焊缝质量的影响研究[J]. 光源与照明, 2021(2): 38-39. |
LIU Yuzong. Study on the influence of weld wire types on the quality of 6082-T6 aluminum alloy laser-arc composite weld welds[J]. Lamps & Lighting, 2021(2): 38-39. | |
[6] |
DUAN F, YIN S F, SONG P P, et al. Automatic welding defect detection of X-ray images by using cascade AdaBoost with penalty term[J]. IEEE Access, 7: 125929-125938.
doi: 10.1109/Access.6287639 URL |
[7] |
HOU W H, WEI Y, GUO J, et al. Automatic detection of welding defects using deep neural network[J]. Journal of Physics: Conference Series, 2018, 933: 012006.
doi: 10.1088/1742-6596/933/1/012006 URL |
[8] | AJMI C, ZAPATA J, MARTÍNEZ-ÁLVAREZ J J, et al. Using deep learning for defect classification on a small weld X-ray image dataset[J]. Journal of Nondestructive Evaluation, 2020, 39(3): 1-13. |
[9] | 闫耀东. 基于深度学习的不锈钢焊缝缺陷分类研究[D]. 太原: 太原科技大学, 2021. |
YAN Yaodong. Research on defect classification of stainless steel welds based on deep learning[D]. Taiyuan: Taiyuan University of Science and Technology, 2021. | |
[10] | 罗爱民, 沈才洪, 易彬, 等. 基于改进二叉树多分类SVM的焊缝缺陷分类方法[J]. 焊接学报, 2010, 31(7): 51-54. |
LUO Aimin, SHEN Caihong, YI Bin, et al. Method of multi-classification by improved binary tree based on SVM for welding defects recongnition[J]. Transactions of the China Welding Institution, 2010, 31(7): 51-54. | |
[11] | 刘欢, 刘骁佳, 王宇斐, 等. 基于复合卷积层神经网络结构的焊缝缺陷分类技术[J]. 航空学报, 2022, 43(Sup.1): 165-172. |
LIU Huan, LIU Xiaojia, WANG Yufei, et al. Weld defect classification technology based on compound convolution neural network structure[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43 (Sup.1): 165-172. | |
[12] |
谷静, 张可帅, 朱漪曼. 基于卷积神经网络的焊缝缺陷图像分类研究[J]. 应用光学, 2020, 41(3): 531-537.
doi: 10.5768/JAO202041.0302007 |
GU Jing, ZHANG Keshuai, ZHU Yiman. Research on weld defect image classification based on convolutional neural network[J]. Journal of Applied Optics, 2020, 41(3): 531-537.
doi: 10.5768/JAO202041.0302007 |
|
[13] | 葛轶洲, 刘恒, 王言, 等. 小样本困境下的深度学习图像识别综述[J]. 软件学报, 2022, 33(1): 193-210. |
GE Yizhou, LIU Heng, WANG Yan, et al. Survey on deep learning image recognition in dilemma of small samples[J]. Journal of Software, 2022, 33(1): 193-210. | |
[14] | 李钧正, 殷子玉, 乐心怡. 基于小样本学习的钢板表面缺陷检测技术[J]. 航空科学技术, 2021, 32(6): 65-70. |
LI Junzheng, YIN Ziyu, LE Xinyi. Surface defect detection for steel plate with small dataset[J]. Aeronautical Science & Technology, 2021, 32(6): 65-70. | |
[15] |
CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: Synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16: 321-357.
doi: 10.1613/jair.953 URL |
[16] | 宋宗垚. 小样本数据下的工业无损检测图像损伤定位算法的研究[D]. 天津: 天津大学, 2019. |
SONG Zongyao. Damage location algorithm for few-shot industrial nondestructive testing[D]. Tianjin: Tianjin University, 2019. | |
[17] | 马岭, 鲁越, 蒋慧琴, 等. 基于小样本学习的LCD产品缺陷自动检测方法[J]. 智能系统学报, 2020, 15(3): 560-567. |
MA Ling, LU Yue, JIANG Huiqin, et al. An automatic small sample learning-based detection method for LCD product defects[J]. CAAI Transactions on Intelligent Systems, 2020, 15(3): 560-567. | |
[18] |
PÉREZ P, GANGNET M, BLAKE A. Poisson image editing[J]. ACM Transactions on Graphics, 2003, 22(3): 313-318.
doi: 10.1145/882262.882269 URL |
[19] | 左飞. 图像处理中的数学修炼[M]. 第2版. 北京: 清华大学出版社, 2020. |
ZUO Fei. Applied mathematics in digital image processing[M]. 2nd ed. Beijing: Tsinghua University Press, 2020. | |
[20] | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[DB/OL]. (2015-12-10)[2022-08-03].https://arxiv.org/abs/1512.03385. |
[21] |
HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
doi: 10.1109/TPAMI.2015.2389824 pmid: 26353135 |
[22] | LIN M, CHEN Q, YAN S. Network in network[DB/OL]. (2014-03-04)[2022-08-03]. https://arxiv.org/abs/1312.4400. |
[23] | 国家标准局.金属熔化焊焊缝缺陷分类及说明: GB/T 6417—1986[S]. 北京: 国家标准局, 1986. |
National Bureau of Standards.Classification of imperfections in metallic fusion welds, with explanations: GB/T 6417—1986[S]. Beijing: National Bureau of Standards, 1986. | |
[24] | BRANCO P, TORGO L, RIBEIRO R P. A survey of predictive modeling on imbalanced domains[J]. ACM Computing Surveys, 2016, 49(2): 1-50. |
[25] |
SUN Y M, WONG A K C, KAMEL M S. Classification of imbalanced data: A review[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2009, 23(4): 687-719.
doi: 10.1142/S0218001409007326 URL |
[1] | TANG Zeyu, ZOU Xiaohu, LI Pengfei, ZHANG Wei, YU Jiaqi, ZHAO Yaodong. A Few-Shots OFDM Target Augmented Identification Method Based on Transfer Learning [J]. Journal of Shanghai Jiao Tong University, 2022, 56(12): 1666-1674. |
[2] | YU Qing (余青), MA Yi (马祎), LI Yongfu∗ (李永福). Enhancing Speech Recognition for Parkinson’s Disease Patient Using Transfer Learning Technique [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 90-98. |
[3] | BU Ran (卜冉), XIANG Wei∗ (向伟), CAO Shitong (曹世同). COVID-19 Interpretable Diagnosis Algorithm Based on a Small Number of Chest X-Ray Samples [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 81-89. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||