Journal of shanghai Jiaotong University (Science) ›› 2014, Vol. 19 ›› Issue (5): 555-560.doi: 10.1007/s12204-014-1540-4
Previous Articles Next Articles
SU Sai-sai1 (苏赛赛), CHEN Ke-wei1,2 (陈克非), HUANG Qiu1* (黄秋)
Online:
2014-10-31
Published:
2014-11-12
Contact:
HUANG Qiu (黄秋)
E-mail:qiuhuang@sjtu.edu.cn
CLC Number:
SU Sai-sai1 (苏赛赛), CHEN Ke-wei1,2 (陈克非), HUANG Qiu1* (黄秋). Discriminant Analysis in the Study of Alzheimer’s Disease Using Feature Extractions and Support Vector Machines in Positron Emission Tomography with 18F-FDG [J]. Journal of shanghai Jiaotong University (Science), 2014, 19(5): 555-560.
[1] Alzheimer’s Association. 2013 Alzheimer’s disease facts and figures [J]. Alzheimer’s & Dementia, 2013,9(2): 208-245. [2] Hampel H, Prvulovic D, Teipel S, et al. The future of Alzheimer’s disease: The next 10 years [J]. Progress in Neurobiology, 2011, 95(4): 718-728. [3] Reiman E M, Jagust W J. Brain imaging in the study of Alzheimer’s disease [J]. NeuroImage, 2012,61(2): 505-516. [4] Querbes O, Aubry F, Pariente J, et al. Early diagnosis of Alzheimer’s disease using cortical thickness:Impact of cognitive reserve [J]. Brain, 2009, 132(8):2036-2047. [5] Duara R, Grady C, Haxby J, et al. Positron emission tomography in Alzheimer’s disease [J]. Neurology,1986, 36(7): 879-887. [6] Norderg A, Rinne J O, Kadir A, et al. The use of PET in Alzheimer disease [J]. Nature Reviews Neurology,2010, 6(2): 78-87. [7] Jagust W J, Bandy D, Chen K, et al. The Alzheimer’s disease neuroimaging initiative positron emission tomography core [J]. Alzheimer’s & Dementia,2010, 6(3): 221-229. [8] Foeter N L, Heidebrink J L, Clark C M, et al. FDG-PET improves accuracy in distinguishing frontotemporal dementia and Alzheimer’s disease [J].Brain, 2007, 130(10): 2616-2635. [9] Du A-T, Schuff N, Kramer J H, et al. Different regional patterns of cortical thinning in Alzheimer’s disease and frontotemporal dementia [J]. Brain, 2007,130(4): 1159-1166. [10] Dickerson B C, Feczko E, Augustinack J C, et al. Differential effects of aging and Alzheimer’s disease on medial temporal lobe cortical thickness and surface area [J]. Neurobiology of Aging, 2009, 30(3): 432-440. [11] Gray K R, Wolz R, Keihaninejad S, et al. Regional analysis of FDG-PET for use in the classification of Alzheimer’s disease [C]// 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro. Chicago, USA: IEEE, 2011: 1082-1085. [12] Gray K R, Woiz R, Heckemann R A, et al. Multiregion analysis of longitudinal FDG-PET for the classification of Alzheimer’s disease [J]. NeuroImage, 2012,60(1): 221-229. [13] Salmon E, Sadzot B, Maquet P, et al. Differential diagnosis of Alzheimer’s disease with PET [J]. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine, 1994, 35(3): 391-398. [14] Mosconi L. Glucose metabolism in normal aging and Alzheimer’s disease: Methodological and physiological considerations for PET studies [J]. Clinical and Translational Imaging, 2013, 1(4): 217-233. [15] Ill′an I, Gorriz J, Lopez M, et al. Computer aided diagnosis of Alzheimer’s disease using component based SVM [J]. Applied Soft Computing, 2011,11(2): 2376-2382. [16] Kim E J, Cho S S, Jeong Y, et al. Glucose metabolism in early onset versus late onset Alzheimer’s disease: An SPM analysis of 120 patients [J]. Brain,2005, 128(8): 1790-1801. [17] Kono A K, Ishii K, Sofue K, et al. Fully automatic differential diagnosis system for dementia with Lewy bodies and Alzheimer’s disease using FDG-PET and 3D-SSP [J]. European Journal of Nuclear Medicine and Molecular Imaging, 2007, 34(9): 1490-1497. [18] Reiman E, Chen K, Liu X, et al. Fibrillar amyloid-β burden in cognitively normal people at 3 levels of genetic risk for Alzhimer’s disease [J]. Proceedings of the National Academy of Sciences, 2009, 106: 6820-6825. [19] Noushath S, Hemantha K G, Shivakumara P.(2D)2 LDA: An efficient approach for face recognition[J]. Pattern Recognition, 2006, 39(7): 1396-1400. [20] Zoua H, Hastiea T, Tibshirania R, et al. Sparse principal component analysis [J]. Journal of Computational and Graphical Statistics, 2006, 15(2): 265-286. [21] Wang L. Support vector machines: Theory and applications[M]. Berlin: Springer, 2005. [22] Lopez M, Ramirez J, Gorriz J, et al. Automatic tool for Alzheimer’s disease diagnosis using PCA and Bayesian classification rules [J]. Electronics Letters,2009, 45(8): 389-391. [23] Ramirez J, Gorriz J, Segovia F, et al. Computer aided diagnosis system for the Alzheimer’s disease based on partial least squares and random forest SPECT image classification [J]. Neuroscience Letters,2010, 472(2): 99-103. |
[1] | NI Yangfan, YANG Yuanyuan, XIE Zhe, ZHENG Dezhong, WANG Weidong. Multi-Feature Extraction of Pulmonary Nodules Based on LSTM and Attention Structure [J]. Journal of Shanghai Jiao Tong University, 2022, 56(8): 1078-1088. |
[2] | WU Caiyu, (吴彩钰), SABOR Nabil, ZHOU Shihong, (周世鸿), WANG Min, (王 敏), YING Liang (应 亮), WANG Guoxing∗ (王国兴). Gram Matrix-Based Convolutional Neural Network for Biometric Identification Using Photoplethysmography Signal [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(4): 463-472. |
[3] | ZHANG Yanhe, ZANG Yuejin, CHEN Bo, XU Mingsheng. Radar HRRP Target Recognition Algorithm Based on Variational Auto-encoder with Disentangled Representation [J]. Air & Space Defense, 2022, 5(2): 87-93. |
[4] | LIU Ning (刘宁), YUAN Zhenming* (袁贞明). Spontaneous Language Analysis in Alzheimer’s Disease:Evaluation of Natural Language Processing Technique for Analyzing Lexical Performance [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(2): 160-167. |
[5] | HUANG Jiayang (黄嘉阳), YANG Pengfei* (杨鹏飞), WAN Bo (万波), ZHANG Zhiqiang (张志强). KDLPCCA-Based Projection for Feature Extraction in SSVEP-Based Brain-Computer Interfaces [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(2): 168-175. |
[6] | TUNG Hao (董昊), ZHENG Chao (郑超), MAO Xinsheng(毛新生), QIAN Dahong (钱大宏). Multi-Lead ECG Classification via an Information-Based Attention Convolutional Neural Network [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 55-69. |
[7] | MA Buyong. Amyloid Hypothesis or Tau Hypothesis, Which Is Right? [J]. Journal of Shanghai Jiao Tong University, 2021, 55(Sup.1): 58-59. |
[8] | LUO Huimiao (罗晖淼), ZHAO Dongbiao∗ (赵东标), FU Wenqiang (付文强). Speed Planning Algorithm Based on Improved S-Type Acceleration and Deceleration Model [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(6): 786-793. |
[9] | HE Xinlin, QI Zongfeng, LI Jianxun. Unbalanced Learning of Generative Adversarial Network Based on Latent Posterior [J]. Journal of Shanghai Jiao Tong University, 2021, 55(5): 557-565. |
[10] | LI Fen, ZHOU Erchang, SUN Gaiping, BAI Yongqing, TONG Li, LIU Bangyin, ZHAO Jinbin. A Novel Weather Classification Method and Its Application in Photovoltaic Power Prediction [J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1510-1519. |
[11] | WANG Wei, WANG Bing, HU Xiong, SUN Dejian. Online Degradation Assessment of Shore Bridge Hoisting Gearbox Based on Improved Symbolic Sequence Entropy and Logistic Regression Model [J]. Journal of Shanghai Jiao Tong University, 2021, 55(10): 1272-1280. |
[12] | LIU Aiguo, CHEN Xuanren, YANG Yudong, CHEN Lei, WANG Chengjun. Influence of Fuel-Staging Ratio on Combustion Performance of Dual Fuel Combustor [J]. Journal of Shanghai Jiaotong University, 2020, 54(7): 756-764. |
[13] | DING Shifeng, ZHOU Li, WANG Zhengrong, TSUPRIK Vladimir G.. Prediction Method of Ice Resistance and Propulsion Power for Polar Ships [J]. J Shanghai Jiaotong Univ Sci, 2020, 25(6): 739-745. |
[14] | WANG Shengsheng, ZHANG Hang, CHEN Juan . Dual Sum-Product Networks Autoencoder for Multi-Label Classification [J]. Journal of Shanghai Jiao Tong University(Science), 2020, 25(5): 665-673. |
[15] | WANG Jun, WANG Sai, REN Yuming, CHEN Dehong, CUI Shan, WEI Shaoming. Combining Denoising with Super Resolution for Target Detection and Recognition of SAR Image Based on Deep Learning [J]. Air & Space Defense, 2020, 3(3): 24-30. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 219
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 559
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||