Journal of Shanghai Jiao Tong University (Science) ›› 2018, Vol. 23 ›› Issue (3): 360-.doi: 10.1007/s12204-018-1951-8
Previous Articles Next Articles
CHEN Yimin (陈一民), LU Rongrong (陆蓉蓉), ZOU Yibo (邹一波), ZHANG Yanhui (张燕辉)
Online:
2018-05-31
Published:
2018-06-17
Contact:
CHEN Yimin (陈一民)
E-mail:ymchen@mail.shu.edu.cn
CLC Number:
CHEN Yimin (陈一民), LU Rongrong (陆蓉蓉), ZOU Yibo (邹一波), ZHANG Yanhui (张燕辉). Branch-Activated Multi-Domain Convolutional Neural Network for Visual Tracking[J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(3): 360-.
[1] | BAI Y C, TANG M. Object tracking via robust multi-task sparse representation [J]. IEEE Signal ProcessingLetters, 2014, 21(8): 909-913. |
[2] | DALAL N, TRIGGS B. Histograms of oriented gra-dients for human detection [C]// International Con-ference on Computer Vision and Pattern Recognition.San Diego, USA: IEEE, 2005: 886-893. |
[3] | KALAL Z, MIKOLAJCZYK K, MATAS J. Tracking-learning-detection [J]. IEEE Transactions on PatternAnalysis and Machine Intelligence, 2010, 6(1): 1-14. |
[4] | NAM H, HAN B. Learning multi-domain convolutionalneural networks for visual tracking [C]//Proceedings ofthe IEEE Conference on Computer Vision and PatternRecognition. Las Vegas, USA: IEEE, 2016: 4293-4302. |
[5] | WANG N Y, LI S Y, GUPTA A, et al. Transferring richfeature hierarchies for robust visual tracking [EB/OL].(2017-02-22). https://arxiv.org/abs/1501.04587. |
[6] | MA C, HUANG J B, YANG X K, et al. Hier-archical convolutional features for visual tracking[C]//Proceedings of the IEEE International Confer-ence on Computer Vision. Boston, USA: IEEE, 2015:3074-3082. |
[7] | WANG L J, OUYANG W L, WANG X G, et al.Visual tracking with fully convolutional networks[C]//Proceedings of the IEEE International Confer-ence on Computer Vision. Boston, USA: IEEE, 2015:3119-3127. |
[8] | MA C, XU Y, NI B B, et al. When correlation ˉltersmeet convolutional neural networks for visual track-ing [J]. IEEE Signal Processing Letters, 2016, 23(10):1454-1458. |
[9] | CHEN K, TAO W B. Once for all: A two-°ow convo-lutional neural network for visual tracking [EB/OL].(2017-02-22). https://arxiv.org/abs/1604.07507. |
[10] | LI H X, LI Y, PORIKLI F. Deeptrack: Learning dis-criminative feature representations online for robustvisual tracking [J]. IEEE Transactions on Image Pro-cessing, 2016, 25(4): 1834-1848. |
[11] | CHATFIELD K, SIMONYAN K, VEDALDI A, etal. Return of the devil in the details: Delvingdeep into convolutional nets [EB/OL]. (2017-02-22).https://arxiv.org/abs/1405.3531. |
[12] | JANWE N J, BHOYAR K K. Video key-frame extrac-tion using unsupervised clustering and mutual com-parison [J]. International Journal of Image Processing,2016, 10(2): 73-84. |
[13] | VEDALDI A, LENC K. MatConvNet: Convolutionalneural networks for MATLAB [C]//Proceedings of the23rd ACM International Conference on Multimedia.Brisbane, Australia: ACM, 2015: 689-692. |
[14] | KRISTAN M, PFLUGFELDER R, LEONARDIS A,et al. The visual object tracking VOT2013 challenge re-sults [C]//Proceedings of the IEEE International Con-ference on Computer Vision Workshops. Sydney, Aus-tralia: IEEE, 2013: 98-111. |
[15] | KRIATAN M, PFLUGFELDER R, LEONARDIS A,et al. The visual object tracking VOT2014 challenge re-sults [C]//Proceedings of the IEEE International Con-ference on Computer Vision Workshops. Paris, France:IEEE, 2014: 1-23. |
[16] | KRISTAN M, MATAS J, LEONARDIS A, et al.The visual object tracking VOT2015 challenge results[C]//Proceedings of the IEEE International Confer-ence on Computer Vision Workshops. Santiago, Chile:IEEE, 2015: 1-23. |
[17] | WU Y, LIM J W, YANG M H. Object tracking bench-mark [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1834-1848. |
[18] | CHEN D P, YUAN Z J, WU Y, et al. Construct-ing adaptive complex cells for robust visual tracking[C]//Proceedings of the IEEE International Confer-ence on Computer Vision. Sydney, Australia: IEEE,2013: 1113-1120. |
[19] | HARE S, GOLODETZ S, SAFFARI A, et al. Struck:Structured output tracking with kernels [J]. IEEETransactions on Pattern Analysis and Machine Intel-ligence, 2016, 38(10): 2096-2109. |
[20] | HE S F, YANG Q X, LAU R W H, et al. Visual track-ing via locality sensitive histograms [C]//Proceedingsof the IEEE Conference on Computer Vision andPattern Recognition. Oregon, Portland: IEEE, 2013:2427-2434. |
[21] | JIA X, LU H C, YANG M H. Visual tracking viaadaptive structural local sparse appearance model[C]//Proceedings of the IEEE Conference on ComputerVision and Pattern Recognition. RI, USA: IEEE, 2012:1822-1829. |
[22] | ZHONG W, LU H C, YANG M H. Robust ob-ject tracking via sparsity-based collaborative model[C]//Proceedings of the IEEE Conference on ComputerVision and Pattern Recognition. RI, USA: IEEE, 2012:1838-1845. |
[1] | PAN Meiqi, HE Xing. A Fault Diagnosis Method for Wind Turbines Based on Zero-Shot Learning [J]. Journal of Shanghai Jiao Tong University, 2025, 59(5): 561-568. |
[2] | QIN Hao, SU Liwei, WU Guangbin, JIANG Chongying, XU Zhipeng, KANG Feng, TAN Huochao, ZHANG Yongjun. Short-Term Telephone-Traffic Prediction of Power Grid Customer Service Based on Adaboost-CNN [J]. Journal of Shanghai Jiao Tong University, 2025, 59(2): 266-273. |
[3] | JIANG Yilin1, 2∗ (蒋伊琳), LI Xiang1, 2 (李向), ZHANG Haoping3 (张昊平). Emitter Beam State Sensing Based on Convolutional Neural Network and Received Signal Strength [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 1017-1022. |
[4] | LU Wen’an, ZHU Qingxiao, LI Zhaowei, LIU Hui, YU Yiping. A Prediction Method of New Power System Frequency Characteristics Based on Convolutional Neural Network [J]. Journal of Shanghai Jiao Tong University, 2024, 58(10): 1500-1512. |
[5] | ZHAN Ke, ZHU Renchuan. A CNN-LSTM Ship Motion Extreme Value Prediction Model [J]. Journal of Shanghai Jiao Tong University, 2023, 57(8): 963-971. |
[6] | LI Qing, HUANGFU Yubin, LI Jiangyun, YANG Zhifang, CHEN Peng, WANG Zihan. UConvTrans:A Dual-Flow Cardiac Image Segmentation Network by Global and Local Information Integration [J]. Journal of Shanghai Jiao Tong University, 2023, 57(5): 570-581. |
[7] | ZENG Guozhi, WEI Ziqing, YUE Bao, DING Yunxiao, ZHENG Chunyuan, ZHAI Xiaoqiang. Energy Consumption Prediction of Office Buildings Based on CNN-RNN Combined Model [J]. Journal of Shanghai Jiao Tong University, 2022, 56(9): 1256-1261. |
[8] | ZHAO Yong, SU Dan. Rogue Wave Prediction Based on Four Combined Long Short-Term Memory Neural Network Models [J]. Journal of Shanghai Jiao Tong University, 2022, 56(4): 516-522. |
[9] | TUNG Hao (董昊), ZHENG Chao (郑超), MAO Xinsheng(毛新生), QIAN Dahong (钱大宏). Multi-Lead ECG Classification via an Information-Based Attention Convolutional Neural Network [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 55-69. |
[10] | ZHAN Zhu (占竹), ZHANG Wenjun (张文俊), CHEN Xia (陈霞), WANG Jun (汪军) . Objective Evaluation of Fabric Flatness Grade Based on Convolutional Neural Network [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 503-510. |
[11] | XUE Rongrong, WANG Zhiwu, YAN Guozheng, ZHUANG Haoyu. Noise Reduction Method for Intestinal Image Acquired by Intestinal Robot [J]. Journal of Shanghai Jiao Tong University, 2021, 55(10): 1303-1309. |
[12] | ZHAO Yong (赵勇), MENG Yang (孟杨), YU Pengyao (于鹏垚), WANG Tianlin (王天霖), SU Shaojuan (苏绍娟). Prediction of Fluid Force Exerted on Bluff Body by Neural Network Method [J]. Journal of Shanghai Jiao Tong University (Science), 2020, 25(2): 186-192. |
[13] | FU Ling (傅玲), MA Jingchen (马璟琛), CHEN Yizhi (琛奕志), LARSSON Rasmus, ZHAO Jun *(赵俊). Automatic Detection of Lung Nodules Using 3D Deep Convolutional Neural Networks [J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(4): 517-523. |
[14] | LI Yangyang,SHI Licheng,WAN Weibing,ZHAO Qunfei. A Convolutional Neural Network-Based Method for 3D Object Detection [J]. Journal of Shanghai Jiaotong University, 2018, 52(1): 7-12. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 141
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 577
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||