J Shanghai Jiaotong Univ Sci ›› 2025, Vol. 30 ›› Issue (5): 988-997.doi: 10.1007/s12204-024-2710-7
• Computing & Computer Technologies • Previous Articles Next Articles
李铭扬,鲍虎军,黄劲
Received:
2023-08-09
Accepted:
2023-08-30
Online:
2025-09-26
Published:
2024-02-20
CLC Number:
LI Mingyang, BAO Hujun, HUANG Jin. Dynamic Cloth Folding Using Curriculum Learning[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 988-997.
[1] TORGERSON E, PAUL F W. Vision-guided robotic fabric manipulation for apparel manufacturing [J]. IEEE Control Systems Magazine, 1988, 8(1): 14-20. [2] WINCK R C, DICKERSON S, BOOK W J, et al. A novel approach to fabric control for automated sewing [C]//2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Singapore. IEEE, 2009: 53-58. [3] SAHARI K S M, SEKI H, KAMIYA Y, et al. Clothes manipulation by robot grippers with roller fingertips [J]. Advanced Robotics, 2010, 24(1/2): 139-158. [4] MAITIN-SHEPARD J, CUSUMANO-TOWNER M, LEI J N, et al. Cloth grasp point detection based on multiple-view geometric cues with application to robotic towel folding [C]//2010 IEEE International Conference on Robotics and Automation. Anchorage: IEEE, 2010: 2308-2315. [5] MILLER S, VAN DEN BERG J, FRITZ M, et al. A geometric approach to robotic laundry folding [J]. International Journal of Robotics Research, 2012, 31(2): 249-267. [6] JANGIR R, ALENYÀ G, TORRAS C. Dynamic cloth manipulation with deep reinforcement learning [C]//2020 IEEE International Conference on Robotics and Automation. Paris: IEEE, 2020: 4630-4636. [7] HIETALA J, BLANCO–MULERO D, ALCAN G, et al. Learning visual feedback control for dynamic cloth folding [C]//2022 IEEE/RSJ International Conference on Intelligent Robots and Systems. Kyoto: IEEE, 2022: 1455-1462. [8] BERSCH C, PITZER B, KAMMEL S. Bimanual robotic cloth manipulation for laundry folding [C]//2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Francisco: IEEE, 2011: 1413-1419. [9] TANAKA K, KAMOTANI Y, YOKOKOHJI Y. Origami folding by a robotic hand [C]//2007 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Diego: IEEE, 2007: 2540-2547. [10] YAMAKAWA Y, NAMIKI A, ISHIKAWA M. Dynamic manipulation of a cloth by high-speed robot system using high-speed visual feedback [J]. IFAC Proceedings Volumes, 2011, 44(1): 8076-8081. [11] HA H, SONG S R. FlingBot: The unreasonable effectiveness of dynamic manipulation for cloth unfolding [DB/OL]. (2021-05-08). http://arxiv.org/abs/2105.03655 [12] ZHANG H, ICHNOWSKI J, SEITA D, et al. Robots of the lost arc: Self-supervised learning to dynamically manipulate fixed-endpoint cables [C]//2021 IEEE International Conference on Robotics and Automation. Xi’an: IEEE, 2021: 4560-4567. [13] WANG R, LEHMAN J, CLUNE J, et al. Paired open-ended trailblazer (POET): Endlessly generating increasingly complex and diverse learning environments and their solutions [DB/OL]. (2019-01-07). https://arxiv.org/abs/1901.01753 [14] OpenAI, AKKAYA I, ANDRYCHOWICZ M, et al. Solving rubik’s cube with a robot hand [DB/OL]. (2019-10-16). http://arxiv.org/abs/1910.07113 [15] KAELBLING L P, LITTMAN M L, MOORE A W. Reinforcement learning: A survey [J]. Journal of Artificial Intelligence Research, 1996, 4: 237-285. [16] HAARNOJA T, ZHOU A, ABBEEL P, et al. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor [DB/OL]. (2018-01-04). http://arxiv.org/abs/1801.01290 [17] MACREADY W G, WOLPERT D H. Bandit problems and the exploration/exploitation tradeoff [J]. IEEE Transactions on Evolutionary Computation, 1998, 2(1): 2-22. [18] ANDRYCHOWICZ M, WOLSKI F, RAY A, et al. Hindsight experience replay[C]//31st Conference on Neural Information Processing Systems. Long Beach: NIPS, 2017: 5048-5058. [19] SPRAGUE N, BALLARD D. Multiple-goal reinforcement learning with modular Sarsa(0) [C]// 18th International Joint Conference on Artificial Intelligence. Acapulco: ACM, 2003: 1445-1447. [20] WANG T Y, CHEN J, LI D P, et al. Fast GPU-based two-way continuous collision handling [J]. ACM Transactions on Graphics, 2023, 42(5): 167. [21] BRIDSON R, FEDKIW R, ANDERSON J. Robust treatment of collisions, contact and friction for cloth animation [J]. ACM Transactions on Graphics, 2002, 21(3): 594-603. [22] CHEN Z L, FENG R G, WANG H M. Modeling friction and air effects between cloth and deformable bodies [J]. ACM Transactions on Graphics, 2013, 32(4): 88. [23] LI J, DAVIET G, NARAIN R, et al. An implicit frictional contact solver for adaptive cloth simulation [J]. ACM Transactions on Graphics, 2018, 37(4): 52. [24] LY M, JOUVE J, BOISSIEUX L, et al. Projective dynamics with dry frictional contact [J]. ACM Transactions on Graphics, 2020, 39(4): 57. [25] LI Y F, DU T, WU K, et al. DiffCloth: Differentiable cloth simulation with dry frictional contact [J]. ACM Transactions on Graphics, 2022, 42(1): 2. [26] ZHAO Z, LIU C S, MA W, et al. Experimental investigation of the painlevé paradox in a robotic system [J]. Journal of Applied Mechanics, 2008, 75(4): 1. [27] MOREAU J J. Unilateral contact and dry friction in finite freedom dynamics [M]// Nonsmooth mechanics and applications. Vienna: Springer, 1988: 1-82. [28] Hu Y, Wang W, Jia H, et al. Learning to utilize shaping rewards: A new approach of reward shaping[C]// 34th Conference on Neural Information Processing Systems. Vancouver: NIPS, 2020: 15931-15941. [29] GUDIMELLA A, STORY R, SHAKER M, et al. Deep reinforcement learning for dexterous manipulation with concept networks [DB/OL]. (2017-09-20). http://arxiv.org/abs/1709.06977 [30] ZAREMBA W, SUTSKEVER I. Learning to execute [DB/OL]. (2014-10-17). http://arxiv.org/abs/1410.4615 [31] PARDO F, TAVAKOLI A, LEVDIK V, et al. Time limits in reinforcement learning[C]// 35th International Conference on Machine Learning. Stockholm: PMLR, 2018: 4045-4054. |
[1] | YE Jihua, JIANG Lu, XIAO Shunjie, ZONG Yi, JIANG Aiwen. Multi-Label Image Classification Model Based on Multiscale Fusion and Adaptive Label Correlation [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 889-898. |
[2] | LIN Xiao, LU Meichen, GAO Mufeng, LI Yan. Lightweight Human Pose Estimation Based on Multi-Attention Mechanism [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 899-910. |
[3] | ZHOU Bowei, XING Guanyu, LIU Yanli. Rail Line Detection Algorithm Based on Improved CLRNet [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 923-934. |
[4] | DING Leqi, WANG Biyun, YAO Lixiu, CAI Yunze. MAGPNet: Multi-Domain Attention-Guided Pyramid Network for Infrared Small Object Detection [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 935-951. |
[5] | LI Shanshan, GUO Yali, HUANG Jiaxin, GAO Ruoyun. Fast Attack Algorithm for JPEG Image Encryption with Block Position Shuffle [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 976-987. |
[6] | LIU Biao, LIU Guangyu, FENG Wei, WANG Shuai, ZHOU Bao, ZHAO Enming. Undecimated Dual-Tree Complex Wavelet Transform and Fuzzy Clustering-Based Sonar Image Denoising Technique [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 998-1008. |
[7] | LIU Chen, LI Wenfa, XU Yunwen, LI Dewei. CenterRCNN: Two-Stage Anchor-Free Object Detection Using Center Keypoint-Based Region Proposal Network [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 1028-1036. |
[8] | ZHANG Guo, CHEN Tao, WANG Jianping. CSC-YOLO: An Image Recognition Model for Surface Defect Detection of Copper Strip and Plates [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 1037-1049. |
[9] | JIANG Wenbo, ZHENG Hangbin, BAO Jinsong. Novel Multi-Step Deep Learning Approach for Detection of Complex Defects in Solar Cells [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 1050-1064. |
[10] | YANG Zhuang, LI Zhaofei, WANG Jihua, WEI Xudong, ZHANG Yijie. Named Entity Identification of Chinese Poetry and Wine Culture Based on ALBERT [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 1065-1072. |
[11] | LIU Mengge, LIU Hao, HE Xin, JIN Shaohui, CHEN Pengyun, XU Mingliang. Research Advances on Non-Line-of-Sight Imaging Technology [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 833-854. |
[12] | SHAO Yanli, YING Yong, CHEN Xi, DONG Siyu, WEI Dan. Multi-Scene Smoke Detection Based on Multi-Feature Extraction Method [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 866-879. |
[13] | Shao Dangguo, Yang Yuanbiao, Ma Lei, Yi Sanli. CT-MFENet: Context Transformer and Multi-Scale Feature Extraction Network via Global-Local Features Fusion for Retinal Vessels Segmentation [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(4): 668-682. |
[14] | Xiao Xianzi, Miao Yubin. Heart Rate Sensing Method Based on Short Millimeter Wave Radar Sequence [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(4): 683-692. |
[15] | Lu Pengli, Li Shiying. Predicting CircRNA-Disease Associations via Non-Negative Matrix Factorization Fused with Multiple Similarity Networks [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(4): 709-719. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||