[1] PEI S Y, CHEN A, LEE J, et al.
Hand interfaces: Using hands to imitate objects in AR/VR for expressive interactions
[C]//Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems.
New Orleans: ACM, 2022: 1-16.
[2] KHETA K, DELGOVE C, LIU R L, et
al. Vision-based conflict detection within crowds based on high-resolution human
pose estimation for smart and safe airport [DB/OL]. (2022-07-01). https://arxiv.org/abs/2207.00477
[3] ENDO M, POSTON K L, SULLIVAN E V,
et al. GaitForeMer: self-supervised pre-training of transformers via human
motion forecasting for few-shot gait impairment severity estimation[M]// Medical
image computing and computer assisted intervention – MICCAI 2022. Cham:
Springer, 2022: 130-139.
[4] TOSHEV A, SZEGEDY C. DeepPose: human
pose estimation via deep neural networks [C]//2014 IEEE Conference on Computer
Vision and Pattern Recognition. Columbus: IEEE, 2014: 1653-1660.
[5] TOMPSON J, JAIN A, LECUN Y, et al.
Joint training of a convolutional network and a graphical model for human pose estimation
[C]// 27th International Conference on Neural Information Processing Systems. Montreal:
NIPS, 2014: 1799-1807.
[6] WEI S H, RAMAKRISHNA V, KANADE T,
et al. Convolutional pose machines [C]//2016 IEEE Conference on Computer Vision
and Pattern Recognition. Las Vegas: IEEE, 2016: 4724-4732.
[7] NEWELL A, YANG K Y, DENG J.
Stacked hourglass networks for human pose estimation[M]// Computer vision –
ECCV 2016. Cham: Springer, 2016: 483-499.
[8] XIAO B, WU H P, WEI Y C. Simple baselines
for human pose estimation and tracking[M]// Computer vision – ECCV 2018. Cham:
Springer, 2018: 472-487.
[9] SUN K, XIAO B, LIU D, et al. Deep high-resolution
representation learning for human pose estimation [C]//2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 5686-5696.
[10] WANG Q L, WU B G, ZHU P F, et al.
ECA-net: Efficient channel attention for deep convolutional neural networks [C]//2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE,
2020: 11531-11539.
[11] HOU Q B, ZHOU D Q, FENG J S.
Coordinate attention for efficient mobile network design [C]//2021 IEEE/CVF
Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 13708-13717.
[12] CHEN Y L, WANG Z C, PENG Y X, et
al. Cascaded pyramid network for multi-person pose estimation [C]//2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City:
IEEE, 2018: 7103-7112.
[13] YU C Q, XIAO B, GAO C X, et al.
Lite-HRNet: A lightweight high-resolution network [C]//2021 IEEE/CVF Conference
on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 10435-10445.
[14] CAO Z, SIMON T, WEI S H, et al.
Realtime multi-person 2D pose estimation using part affinity fields [C]//2017
IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE,
2017: 1302-1310.
[15] CHENG B W, XIAO B, WANG J D, et
al. HigherHRNet: scale-aware representation learning for bottom-up human pose
estimation [C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition.
Seattle: IEEE, 2020: 5385-5394.
[16] MCNALLY W, VATS K, WONG A, et al.
Rethinking keypoint representations: Modeling keypoints and poses as objects
for multi-person human pose estimation[M]// Computer vision – ECCV 2022. Cham:
Springer, 2022: 37-54.
[17] LI Z, YE J W, SONG M L, et al.
Online knowledge distillation for efficient pose estimation [C]//2021 IEEE/CVF International
Conference on Computer Vision. Montreal: IEEE, 2021: 11720-11730.
[18] KRIZHEVSKY A, SUTSKEVER I, HINTON
G E. ImageNet classification with deep convolutional neural networks [J]. Communications
of the ACM, 2017, 60(6): 84-90.
[19] HU J, SHEN L, SUN G. Squeeze-and-excitation
networks [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition. Salt Lake City: IEEE, 2018: 7132-7141.
[20] WOO S, PARK J, LEE J Y, et al.
CBAM: convolutional block attention module[M]// Computer vision – ECCV 2018.
Cham: Springer, 2018: 3-19.
[21] FU J, LIU J, TIAN H J, et al.
Dual attention network for scene segmentation [C]//2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition. Long Beach: IEEE, 2019: 3141-3149.
[22] HOWARD A, SANDLER M, CHEN B, et
al. Searching for MobileNetV3 [C]//2019 IEEE/CVF International Conference on Computer
Vision. Seoul: IEEE, 2019: 1314-1324.
[23] LIN T Y, MAIRE M, BELONGIE S, et
al. Microsoft COCO: Common objects in context [M]//Computer vision – ECCV 2014.
Cham: Springer, 2014: 740-755.
[24] ANDRILUKA M, PISHCHULIN L, GEHLER
P, et al. 2D human pose estimation: New benchmark and state of the art analysis
[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus:
IEEE, 2014: 3686-3693.
[25] ZHANG Z, TANG J, WU G S. Simple
and lightweight human pose estimation [DB/OL]. (2019-11-23). https://arxiv.org/abs/1911.10346
[26] LI Q, ZHANG Z Y, XIAO F, et al.
Dite-HRNet: Dynamic lightweight high-resolution network for human pose
estimation [DB/OL]. (2022-04-22). https://arxiv.org/abs/2204.10762
[27] MAJI D, NAGORI S, MATHEW M, et
al. YOLO-pose: Enhancing YOLO for multi person pose estimation using object
keypoint similarity loss [C]//2022 IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops. New Orleans: IEEE, 2022: 2636-2645.
[28] PAPANDREOU G, ZHU T, CHEN L C, et
al. PersonLab: person pose estimation and instance segmentation with a
bottom-up, part-based, geometric embedding model[M]// Computer vision – ECCV
2018. Cham: Springer, 2018: 282-299.
[29] KOCABAS M, KARAGOZ S, AKBAS E.
MultiPoseNet: fast multi-person pose estimation using pose residual network[M]//
Computer vision – ECCV 2018. Cham: Springer, 2018: 437-453.
[30] PAPANDREOU G, ZHU T, KANAZAWA N,
et al. Towards accurate multi-person pose estimation in the wild [C]//2017 IEEE
Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 3711-3719.
[31] CARREIRA J, AGRAWAL P, FRAGKIADAKI
K, et al. Human pose estimation with iterative error feedback [C]//2016 IEEE Conference
on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 4733-4742.
[32] GKIOXARI G, TOSHEV A, JAITLY N.
Chained predictions using convolutional neural networks[M]// Computer vision –
ECCV 2016. Cham: Springer, 2016: 728-743.
[33] WEI S H, RAMAKRISHNA V, KANADE T,
et al. Convolutional pose machines [C]//2016 IEEE Conference on Computer Vision
and Pattern Recognition. Las Vegas: IEEE, 2016: 4724-4732.
|