J Shanghai Jiaotong Univ Sci ›› 2025, Vol. 30 ›› Issue (5): 889-898.doi: 10.1007/s12204-023-2688-6
• Computing & Computer Technologies • Previous Articles Next Articles
叶继华,江蕗, 肖顺杰, 宗义, 江爱文
Received:
2023-07-10
Accepted:
2023-07-31
Online:
2025-09-26
Published:
2023-12-21
CLC Number:
YE Jihua, JIANG Lu, XIAO Shunjie, ZONG Yi, JIANG Aiwen. Multi-Label Image Classification Model Based on Multiscale Fusion and Adaptive Label Correlation[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 889-898.
[1] WANG Y, HE D L, LI F, et al. Multi-label classification with label graph superimposing [J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 12265-12272. [2] WANG J, YANG Y, MAO J H, et al. CNN-RNN: A unified framework for multi-label image classification [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 2285-2294. [3] WANG Z X, CHEN T S, LI G B, et al. Multi-label image recognition by recurrently discovering attentional regions [C]//2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 464-472. [4] CHEN Z M, WEI X S, WANG P, et al. Multi-label image recognition with graph convolutional networks [C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 5172-5181. [5] YE J, HE J J, PENG X J, et al. Attention-driven dynamic graph convolutional network for multi-label image recognition[M]//European conference on computer vision. Cham: Springer, 2020: 649-665. [6] CHEN T S, LIN L, CHEN R Q, et al. Knowledge-guided multi-label few-shot learning for general image recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(3): 1371-1384. [7] LI Q, PENG X J, QIAO Y, et al. Learning label correlations for multi-label image recognition with graph networks [J]. Pattern Recognition Letters, 2020, 138: 378-384. [8] QI Y H, GUO Y C, CHEN Y S. Multi-label image recognition with asymmetric co- dependency graphs [C]//2021 IEEE 6th International Conference on Big Data Analytics. Xiamen: IEEE, 2021: 287-294. [9] NGUYEN H D, VU X S, LE D T. Modular graph transformer networks for multi-label image classification [J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(10): 9092-9100. [10] OGUZ YAZICI V, GONZALEZ-GARCIA A, RAMISA A, et al. Orderless recurrent models for multi-label classification [C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 13437-13446. [11] YOU R C, GUO Z Y, CUI L, et al. Cross-modality attention with semantic graph embedding for multi-label classification [J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 12709-12716. [12] VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks [DB/OL]. (2017-10-30). https://arxiv.org/abs/1710.10903 [13] EVERINGHAM M, ALI ESLAMI S M, VAN GOOL L, et al. The pascal visual object classes challenge: A retrospective [J]. International Journal of Computer Vision, 2015, 111(1): 98-136. [14] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: Common objects in context[M]//European conference on computer vision. Cham: Springer, 2014: 740-755. [15] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778. [16] ZHU F, LI H S, OUYANG W L, et al. Learning spatial regularization with image-level supervisions for multi-label image classification [C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 2027-2036. [17] GE W F, YANG S B, YU Y Z. Multi-evidence filtering and fusion for multi-label classification, object detection and semantic segmentation based on weakly supervised learning [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 1277-1286. [18] CHEN Z M, WEI X S, WANG P, et al. Learning graph convolutional networks for multi-label recognition and applications [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(6): 6969-6983. [19] YUAN J, CHEN S K, ZHANG Y, et al. Graph attention transformer network for multi-label image classification [J]. ACM Transactions on Multimedia Computing, Communications, and Applications, 19(4): 150. [20] CHEN T S, XU M X, HUI X L, et al. Learning semantic-specific graph representation for multi-label image recognition [C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 522-531. [21] ZHAO J W, YAN K, ZHAO Y F, et al. Transformer-based dual relation graph for multi-label image recognition [C]//2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 163-172. [22] YAO X, XU F Y, GU M, et al. M-GCN: Brain-inspired memory graph convolutional network for multi-label image recognition [J]. Neural Computing and Applications, 2022, 34(8): 6489-6502. [23] ZANG L G, LI Y C, CHEN H. Multilabel recognition algorithm with multigraph structure [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(2): 782-792. |
[1] | LIN Xiao, LU Meichen, GAO Mufeng, LI Yan. Lightweight Human Pose Estimation Based on Multi-Attention Mechanism [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 899-910. |
[2] | LIU Mengge, LIU Hao, HE Xin, JIN Shaohui, CHEN Pengyun, XU Mingliang. Research Advances on Non-Line-of-Sight Imaging Technology [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 833-854. |
[3] | Wang Baomin, Ding Hewei, Teng Fei, Liu Hongqin. Damage Detection of X-ray Image of Conveyor Belts with Steel Rope Cores Based on Improved FCOS Algorithm [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 309-318. |
[4] | Diao Zijian, Cao Shuai, Li Wenwei, Liang Jianan, Wen Guilin, Huang Weixi, Zhang Shouming. Person Re-Identification Based on Spatial Feature Learning and Multi-Granularity Feature Fusion [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 363-374. |
[5] | SONG Hao-hao (宋好好), LU Zhen (陆 臻). Image Fusion Scheme Based on Nonsubsampled Contourlet and Block-Based Cosine Transform [J]. J Shanghai Jiaotong Univ Sci, 2012, 17(1): 8-012. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||