J Shanghai Jiaotong Univ Sci ›› 2025, Vol. 30 ›› Issue (5): 935-951.doi: 10.1007/s12204-024-2694-3
• Computing & Computer Technologies • Previous Articles Next Articles
丁乐琪1,2, 王碧云3, 姚莉秀1,2, 蔡云泽1,2
Received:
2023-03-21
Accepted:
2023-07-14
Online:
2025-09-26
Published:
2024-01-05
CLC Number:
DING Leqi, WANG Biyun, YAO Lixiu, CAI Yunze. MAGPNet: Multi-Domain Attention-Guided Pyramid Network for Infrared Small Object Detection[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 935-951.
[1] TEUTSCH M, KRÜGER W. Classification of small boats in infrared images for maritime surveillance [C]//2010 International WaterSide Security Conference. Carrara: IEEE, 2010: 1-7. [2] LIU F C, GAO C Q, CHEN F, et al. Infrared small and dim target detection with transformer under complex backgrounds [J]. IEEE Transactions on Image Processing, 2023, 32: 5921-5932. [3] HOU Q Y, WANG Z P, TAN F J, et al. RISTDnet: Robust infrared small target detection network [J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1-5. [4] HUANG S Q, PENG Z M, WANG Z R, et al. Infrared small target detection by density peaks searching and maximum-gray region growing [J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(12): 1919-1923. [5] HAN J H, LIANG K, ZHOU B, et al. Infrared small target detection utilizing the multiscale relative local contrast measure [J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(4): 612-616. [6] LING F, ZHANG Y, ZHANG J H, et al. Infrared multi-target tracking based on Deep-Sort optimization algorithm [C]//2021 International Conference on Control, Automation and Information Sciences. Xi'an: IEEE, 2021: 1023-1028. [7] DAI Y M, WU Y Q, ZHOU F, et al. Asymmetric contextual modulation for infrared small target detection [C]//2021 IEEE Winter Conference on Applications of Computer Vision. Waikoloa: IEEE, 2021: 949-958. [8] WANG H, ZHOU L P, WANG L. Miss detection vs. false alarm: Adversarial learning for small object segmentation in infrared images [C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 8508-8517. [9] ZHANG M J, ZHANG R, YANG Y X, et al. ISNet: shape matters for infrared small target detection [C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 867-876. [10] BRAUWERS G, FRASINCAR F. A general survey on attention mechanisms in deep learning [J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(4): 3279-3298. [11] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// 31st Conference on Neural Information Processing Systems. Long Beach: NIPS, 2017: 1-11. [12] JADERBERG M, SIMONYAN K, ZISSERMAN A, et al. Spatial transformer networks [DB/OL]. (2015-06-05). https://arxiv.org/abs/1506.02025 [13] HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023. [14] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks [J]. Communications of the ACM, 2017, 60(6): 84-90. [15] LI X, WANG W H, HU X L, et al. Selective kernel networks [C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 510-519. [16] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[M]//European conference on computer vision. Cham: Springer, 2018: 3-19. [17] WANG X L, GIRSHICK R, GUPTA A, et al. Non-local neural networks [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7794-7803. [18] FU J, LIU J, TIAN H J, et al. Dual attention network for scene segmentation [C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 3141-3149. [19] ZENG M, LI J X, PENG Z. The design of Top-Hat morphological filter and application to infrared target detection [J]. Infrared Physics & Technology, 2006, 48(1): 67-76. [20] DESHPANDE S D, ER M H, VENKATESWARLU R, et al. Max-mean and max-median filters for detection of small targets [C]// SPIE's International Symposium on Optical Science, Engineering, and Instrumentation. Denver: SPIE, 1999: 74-83. [21] PHILIP CHEN C L, LI H, WEI Y T, et al. A local contrast method for small infrared target detection [J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1): 574-581. [22] WEI Y T, YOU X G, LI H. Multiscale patch-based contrast measure for small infrared target detection [J]. Pattern Recognition, 2016, 58: 216-226. [23] HAN J H, LIANG K, ZHOU B, et al. Infrared small target detection utilizing the multiscale relative local contrast measure [J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(4): 612-616. [24] DENG H, SUN X P, LIU M L, et al. Small infrared target detection based on weighted local difference measure [J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(7): 4204-4214. [25] AGHAZIYARATI S, MORADI S, TALEBI H. Small infrared target detection using absolute average difference weighted by cumulative directional derivatives [J]. Infrared Physics & Technology, 2019, 101: 78-87. [26] DAI Y M, WU Y Q, ZHOU F, et al. Attentional local contrast networks for infrared small target detection [J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(11): 9813-9824. [27] LI B Y, XIAO C, WANG L G, et al. Dense nested attention network for infrared small target detection [J]. IEEE Transactions on Image Processing, 2022, 32: 1745-1758. [28] WU X, HONG D F, CHANUSSOT J. UIU-net: U-net in U-net for infrared small object detection [J]. IEEE Transactions on Image Processing, 2022, 32: 364-376. [29] RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation[M]//Mmedical image computing and computer-assisted intervention – MICCAI 2015. Cham: Springer, 2015: 234-241. [30] CHEN F, GAO C Q, LIU F C, et al. Local patch network with global attention for infrared small target detection [J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(5): 3979-3991. [31] ZHANG T F, LI L, CAO S Y, et al. Attention-guided pyramid context networks for detecting infrared small target under complex background [J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(4): 4250-4261. [32] XIE S N, GIRSHICK R, DOLLÁR P, et al. Aggregated residual transformations for deep neural networks [C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 5987-5995. [33] YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions [DB/OL]. (2015-11-23). https://arxiv.org/abs/1511.07122 [34] RAHMAN M A, WANG Y. Optimizing intersection-over-union in deep neural networks for image segmentation[M]// Advances in visual computing. Cham: Springer, 2016: 234-244. [35] PASZKE A, GROSS S, MASSA F, et al. PyTorch: An imperative style, high-performance deep learning library [DB/OL]. (2019-12-03). https://arxiv.org/abs/1912.01703 [36] KINGMA D P, BA J. Adam: A method for stochastic optimization [DB/OL]. (2014-12-22). https://arxiv.org/abs/1412.6980 [37] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: Transformers for image recognition at scale[DB/OL]. (2020-10-22). https://arxiv.org/abs/2010.11929 [38] HE K M, ZHANG X Y, REN S Q, et al. Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification [C]//2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 1026-1034. [39] ZHANG Y J, WANG B Y, CAI Y Z. Multi-channel based on attention network for infrared small target detection [J]. Journal of Shanghai Jiao Tong University (Science), 2023. https://doi.org/10.1007/s12204-023-2616-9 [40] ZHAO T, WANG T S, CAO Y X, et al. Infrared dim and small target detection and tracking based on single multi-frame algorithm under sea clutter background [C]//2019 Chinese Control Conference. Guangzhou: IEEE, 2019: 7912-7917. [41] SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: Visual explanations from deep networks via gradient-based localization [C]//2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 618-626. |
[1] | YE Jihua, JIANG Lu, XIAO Shunjie, ZONG Yi, JIANG Aiwen. Multi-Label Image Classification Model Based on Multiscale Fusion and Adaptive Label Correlation [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 889-898. |
[2] | LIN Xiao, LU Meichen, GAO Mufeng, LI Yan. Lightweight Human Pose Estimation Based on Multi-Attention Mechanism [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 899-910. |
[3] | JIANG Wenbo, ZHENG Hangbin, BAO Jinsong. Novel Multi-Step Deep Learning Approach for Detection of Complex Defects in Solar Cells [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 1050-1064. |
[4] | LIU Mengge, LIU Hao, HE Xin, JIN Shaohui, CHEN Pengyun, XU Mingliang. Research Advances on Non-Line-of-Sight Imaging Technology [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 833-854. |
[5] | Fu Zeyu, Fu Zhuang, Guan Yisheng. Vascular Interventional Surgery Path Planning and 3D Visual Navigation [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 472-481. |
[6] | Wang Baomin, Ding Hewei, Teng Fei, Liu Hongqin. Damage Detection of X-ray Image of Conveyor Belts with Steel Rope Cores Based on Improved FCOS Algorithm [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 309-318. |
[7] | Wang Gang, Guan Yaonan, Li Dewei. Two-Stream Auto-Encoder Network for Unsupervised Skeleton-Based Action Recognition [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 330-336. |
[8] | Diao Zijian, Cao Shuai, Li Wenwei, Liang Jianan, Wen Guilin, Huang Weixi, Zhang Shouming. Person Re-Identification Based on Spatial Feature Learning and Multi-Granularity Feature Fusion [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 363-374. |
[9] | ZHOU Su (周苏), ZHONG Zebin∗ (钟泽滨). Real-Time Ranging of Vehicles and Pedestrians for Mobile Application on Smartphones [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 1081-1090. |
[10] | YAN Congqiang1,2 (鄢丛强), GUO Zhengyun3,4 (郭正玉), CAI Yunze1,2∗∗ (蔡云泽). Data Augmentation of Ship Wakes in SAR Images Based on Improved CycleGAN [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 702-711. |
[11] | LONARE Savita1,2* , BHRAMARAMBA Ravi2. Federated Approach for Privacy-Preserving Traffic Prediction Using Graph Convolutional Network [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 509-517. |
[12] | LV Feng(吕峰), WANG Xinyan* (王新彦), LI Lei(李磊), JIANG Quan(江泉), YI Zhengyang(易政洋). Tree Detection Algorithm Based on Embedded YOLO Lightweight Network [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 518-527. |
[13] | SONG Liboa (宋立博), FEI Yanqiongb (费燕琼). New Lite YOLOv4-Tiny Algorithm and Application on Crack Intelligent Detection [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 528-536. |
[14] | SHEN Ao1,2‡ (沈傲), HU Jisu 2,3‡ (胡冀苏), JIN Pengfei4 (金鹏飞), ZHOU Zhiyong2 (周志勇), QIAN Xusheng 2,3 (钱旭升), ZHENG Yi2 (郑毅), BAO Jie 4 (包婕), WANG Ximing4∗ (王希明), DAI Yakang1,2∗ (戴亚康). Ensemble Attention Guided Multi-SEANet Trained with Curriculum Learning for Noninvasive Prediction of Gleason Grade Groups from MRI [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(1): 109-119. |
[15] | XUE Yongboa (薛永波),LIU Zhaob (刘钊), LI Zeyanga (李泽阳),ZHU Pinga* (朱平). CT Image Segmentation Method of Composite Material Based on Improved Watershed Algorithm and U-Net Neural Network Model [J]. J Shanghai Jiaotong Univ Sci, 2023, 28(6): 783-792. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||