J Shanghai Jiaotong Univ Sci ›› 2024, Vol. 29 ›› Issue (3): 518-527.doi: 10.1007/s12204-022-2451-4
• Automation & Computer Technologies • Previous Articles Next Articles
LV Feng(吕峰), WANG Xinyan* (王新彦), LI Lei(李磊), JIANG Quan(江泉), YI Zhengyang(易政洋)
Received:
2021-01-17
Accepted:
2021-06-18
Online:
2024-05-28
Published:
2024-05-28
CLC Number:
LV Feng(吕峰), WANG Xinyan* (王新彦), LI Lei(李磊), JIANG Quan(江泉), YI Zhengyang(易政洋). Tree Detection Algorithm Based on Embedded YOLO Lightweight Network[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 518-527.
[1] LECUN Y, BENGIO Y, HINTON G. Deep learning [J]. Nature, 2015, 521(7553): 436-444. [2] HUANG J, RATHOD V, SUN C, et al. Speed/accuracy trade-offs for modern convolutional object detectors [C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA: IEEE, 2017: 3296-3297. [3] GIRSHICK R, DONAHUE J, DARRELL T, et al. Region-based convolutional networks for accurate object detection and segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(1): 142-158. [4] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA: IEEE, 2014: 580-587. [5] GIRSHICK R. Fast R-CNN [C]//2015 IEEE International Conference on Computer Vision. Santiago, Chile: IEEE, 2015: 1440-1448. [6] REN S Q, HE K M, GIRSHICK R, et al. Faster RCNN: Towards real-time object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. [7] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector [M]//Computer vision-ECCV 2016. Cham: Springer, 2016: 21-37. [8] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE, 2016: 779-788. [9] REDMON J, FARHADI A. YOLO9000: better, faster, stronger [C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA: IEEE, 2017: 6517-6525. [10] REDMON J, FARHADI A. Yolov3: An incremental improvement [EB/OL]. (2018-04-08). https://arxiv.org/abs/1804.02767. [11] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. Yolov4: Optimal speed and accuracy of object detection [EB/OL]. (2020-04-23). https://arxiv.org/abs/2004.10934. [12] HOWARD A G, ZHU M, CHEN B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications [EB/OL]. (2017-04-17). https://arxiv.org/abs/1704.04861. [13] SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: Inverted residuals and linear bottlenecks [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE, 2018: 4510-4520. [14] HOWARD A, SANDLER M, CHEN B, et al. Searching for MobileNetV3 [C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV ). Seoul, Korea: IEEE, 2019: 1314-1324. [15] YARAK K, WITAYANGKURN A, KRITIYUTANONT K, et al. Oil palm tree detection and health classification on high-resolution imagery using deep learning [J]. Agriculture, 2021, 11(2): 183. [16] ITAKURA K, HOSOI F. Automatic tree detection from three-dimensional images reconstructed from 360? spherical camera using YOLO v2 [J]. Remote Sensing, 2020, 12(6): 988. [17] WEINSTEIN B G, MARCONI S, BOHLMAN S A, et al. Cross-site learning in deep learning RGB tree crown detection [J]. Ecological Informatics, 2020, 56: 101061. [18] ITAKURA K, HOSOI F. Automated tree detection from 3D lidar images using image processing and machine learning [J]. Applied Optics, 2019, 58(14): 3807-3811. [19] MAJEED Y, ZHANG J, ZHANG X, et al. Deep learning based segmentation for automated training of apple trees on trellis wires [J]. Computers and Electronics in Agriculture, 2020, 170: 105277. [20] XI Z X, HOPKINSON C, ROOD S B, et al. See the forest and the trees: Effective machine and deep learning algorithms for wood filtering and tree species classification from terrestrial laser scanning [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 168: 1-16. |
[1] | Fu Zeyu, Fu Zhuang, Guan Yisheng. Vascular Interventional Surgery Path Planning and 3D Visual Navigation [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 472-481. |
[2] | Wang Baomin, Ding Hewei, Teng Fei, Liu Hongqin. Damage Detection of X-ray Image of Conveyor Belts with Steel Rope Cores Based on Improved FCOS Algorithm [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 309-318. |
[3] | Wang Gang, Guan Yaonan, Li Dewei. Two-Stream Auto-Encoder Network for Unsupervised Skeleton-Based Action Recognition [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 330-336. |
[4] | Diao Zijian, Cao Shuai, Li Wenwei, Liang Jianan, Wen Guilin, Huang Weixi, Zhang Shouming. Person Re-Identification Based on Spatial Feature Learning and Multi-Granularity Feature Fusion [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 363-374. |
[5] | ZHOU Su (周苏), ZHONG Zebin∗ (钟泽滨). Real-Time Ranging of Vehicles and Pedestrians for Mobile Application on Smartphones [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 1081-1090. |
[6] | YAN Congqiang1,2 (鄢丛强), GUO Zhengyun3,4 (郭正玉), CAI Yunze1,2∗∗ (蔡云泽). Data Augmentation of Ship Wakes in SAR Images Based on Improved CycleGAN [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 702-711. |
[7] | LONARE Savita1,2* , BHRAMARAMBA Ravi2. Federated Approach for Privacy-Preserving Traffic Prediction Using Graph Convolutional Network [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 509-517. |
[8] | SONG Liboa (宋立博), FEI Yanqiongb (费燕琼). New Lite YOLOv4-Tiny Algorithm and Application on Crack Intelligent Detection [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 528-536. |
[9] | SHEN Ao1,2‡ (沈傲), HU Jisu 2,3‡ (胡冀苏), JIN Pengfei4 (金鹏飞), ZHOU Zhiyong2 (周志勇), QIAN Xusheng 2,3 (钱旭升), ZHENG Yi2 (郑毅), BAO Jie 4 (包婕), WANG Ximing4∗ (王希明), DAI Yakang1,2∗ (戴亚康). Ensemble Attention Guided Multi-SEANet Trained with Curriculum Learning for Noninvasive Prediction of Gleason Grade Groups from MRI [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(1): 109-119. |
[10] | XUE Yongboa (薛永波),LIU Zhaob (刘钊), LI Zeyanga (李泽阳),ZHU Pinga* (朱平). CT Image Segmentation Method of Composite Material Based on Improved Watershed Algorithm and U-Net Neural Network Model [J]. J Shanghai Jiaotong Univ Sci, 2023, 28(6): 783-792. |
[11] | QIN Chao1 (秦 超), WANG Yafei1 (王亚飞), ZHANG Yuchao2 (张宇超), YIN Chengliang1∗ (殷承良). Birds-Eye-View Semantic Segmentation and Voxels Semantic Segmentation Based on Frustum Voxels Modeling and Monocular Camera [J]. J Shanghai Jiaotong Univ Sci, 2023, 28(1): 100-113. |
[12] | FU Jiawei∗ (傅家威), ZHAO Xu (赵 旭). Action-aware Encoder-Decoder Network for Pedestrian Trajectory Prediction [J]. J Shanghai Jiaotong Univ Sci, 2023, 28(1): 20-27. |
[13] | SONG Hao-hao (宋好好), LU Zhen (陆 臻). Image Fusion Scheme Based on Nonsubsampled Contourlet and Block-Based Cosine Transform [J]. J Shanghai Jiaotong Univ Sci, 2012, 17(1): 8-012. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 42
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 357
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||