J Shanghai Jiaotong Univ Sci ›› 2024, Vol. 29 ›› Issue (3): 509-517.doi: 10.1007/s12204-021-2382-5
• Automation & Computer Technologies • Previous Articles Next Articles
LONARE Savita1,2* , BHRAMARAMBA Ravi2
Received:
2021-01-11
Accepted:
2021-05-18
Online:
2024-05-28
Published:
2024-05-28
CLC Number:
LONARE Savita1,2* , BHRAMARAMBA Ravi2. Federated Approach for Privacy-Preserving Traffic Prediction Using Graph Convolutional Network[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 509-517.
[1] AHMED M S, COOK A R. Analysis of freeway traffic time-series data by using box-jenkins techniques [J]. Transportation Research Record, 1979(722): 1-9. [2] ALGHAMDI T, ELGAZZAR K, BAYOUMI M, et al. Forecasting traffic congestion using ARIMA modeling [C]/ 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC ). Tangier, Morocco: IEEE, 2019: 1227-1232. [3] KUMAR S V, VANAJAKSHI L. Short-term traffic flow prediction using seasonal ARIMA model with limited input data [J]. European Transport Research Review, 2015, 7(3): 1-9. [4] PAVLYUK D. Short-term traffic forecasting using multivariate autoregressive models [J]. Procedia Engineering, 2017, 178: 57-66. [5] WEI W Y, WU H H, MA H D. An AutoEncoder and LSTM-based traffic flow prediction method [J]. Sensors, 2019, 19(13): 2946. [6] AHN J, KO E, KIM E Y. Highway traffic flow prediction using support vector regression and Bayesian classifier [C]//2016 International Conference on Big Data and Smart Computing (BigComp). Hong Kong, China: IEEE, 2016: 239-244. [7] ZHANG L, LIU Q C, YANG W C, et al. An improved K-nearest neighbor model for short-term traffic flow prediction [J]. Procedia - Social and Behavioral Sciences, 2013, 96: 653-662. [8] LONARE S, BHRAMARAMBA R. Traffic flow prediction using regression and deep learning approach [M]//New trends in computational vision and bioinspired computing. Cham: Springer, 2020: 641-648. [9] ZHAO Z, CHEN W H, WU X M, et al. LSTM network: A deep learning approach for short-term traffic forecast [J]. IET Intelligent Transport Systems, 2017, 11(2): 68-75. [10] ZHANG W B, YU Y H, QI Y, et al. Short-term traffic flow prediction based on spatio-temporal analysis and CNN deep learning [J]. Transportmetrica A: Transport Science, 2019, 15(2): 1688-1711. [11] MIN W L, WYNTER L. Real-time road traffic prediction with spatio-temporal correlations [J]. Transportation Research Part C : Emerging Technologies, 2011, 19(4): 606-616. [12] WU Z H, PAN S R, CHEN F W, et al. A comprehensive survey on graph neural networks [J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(1): 4-24. [13] ZHAO L, SONG Y J, ZHANG C, et al. T-GCN: A temporal graph convolutional network for traffic prediction [J] IEEE Transactions on Intelligent Transportation Systems, 2020, 21(9): 3848-3858. [14] KHODABANDELOU G, KATRANJI M, KRAIEM S, et al. Attention-based gated recurrent unit for links traffic speed forecasting [C]//2019 IEEE Intelligent Transportation Systems Conference (ITSC ). Auckland, New Zealand: IEEE, 2019: 2577-2583. [15] LI Y G, YU R, SHAHABI C, et al. Diffusion convolutional recurrent neural network: Datadriven traffic forecasting [EB/OL]. (2018-02-22). https://arxiv.org/abs/1707.01926. [16] ZHAO L, SONG Y J, ZHANG C, et al. T-GCN: A temporal graph convolutional network for traffic prediction [J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(9): 3848-3858. [17] PAN Z Y, LIANG Y X, WANG W F, et al. Urban traffic prediction from spatio-temporal data using deep meta learning [C]//25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. Anchorage, AK, USA: ACM, 2019: 1720-1730. [18] DE MEDRANO R, AZNARTE J L. A spatio-temporal attention-based spot-forecasting framework for urban traffic prediction [J]. Applied Soft Computing, 2020, 96: 106615. [19] YU B, YIN H T, ZHU Z X. Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting [C]//Twenty-Seventh International Joint Conference on Artificial Intelligence. Stockholm, Sweden: International Joint Conferences on Artificial Intelligence Organization, 2018: 3634-3640. [20] GUO S N, LIN Y F, FENG N, et al. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting [J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33: 922-929. [21] ELBIR A M, SONER B, COLERI S. Federated learning in vehicular networks [EB/OL]. (2020-09-19). https://arxiv.org/abs/2006.01412. [22] LIM W Y B, HUANG J Q, XIONG Z H, et al. Towards federated learning in UAV-enabled Internet of vehicles: A multi-dimensional contract-matching approach [J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(8): 5140-5154. [23] SHIRI H, PARK J, BENNIS M. Communicationefficient massive UAV online path control: Federated learning meets mean-field game theory [J]. IEEE Transactions on Communications, 2020, 68(11): 6840- 6857. [24] SAPUTRA Y M, NGUYEN D, DINH H T, et al. Federated learning meets contract theory: Economicefficiency framework for electric vehicle networks [J]. IEEE Transactions on Mobile Computing, 2020. https://doi.org/10.1109/TMC.2020.3045987 (published online). [25] VAN HULST J M, ZENI M, KR ¨OLLER A, et al. Beyond privacy regulations: An ethical approach to data usage in transportation [EB/OL]. (2020-04-01). https://arxiv.org/abs/2004.00491. [26] LIU Y, YU J J Q, KANG J W, et al. Privacypreserving traffic flow prediction: A federated learning approach [J]. IEEE Internet of Things Journal, 2020, 7(8): 7751-7763. [27] YIN F, LIN Z D, KONG Q L, et al. FedLoc: federated learning framework for data-driven cooperative localization and location data processing [J]. IEEE Open Journal of Signal Processing, 2020, 1: 187-215. [28] CHEN C C, ZHOU J, WU B Z, et al. Practical privacy preserving POI recommendation [J]. ACM Transactions on Intelligent Systems and Technology, 2020, 11(5): 1-20. [29] CIFTLER B S, ALBASEER A, LASLA N, et al. Federated learning for RSS fingerprint-based localization: A privacy-preserving crowdsourcing method [C]//2020 International Wireless Communications and Mobile Computing (IWCMC ). Limassol, Cyprus: IEEE, 2020: 2112-2117. [30] LIANG X L, LIU Y, CHEN T J, et al. Federated transfer reinforcement learning for autonomous driving [EB/OL]. (2019-10-14). https://arxiv.org/abs/1910.06001. [31] SAPUTRA Y M, HOANG D T, NGUYEN D N, et al. Energy demand prediction with federated learning for electric vehicle networks [C]//2019 IEEE Global Communications Conference (GLOBECOM ). Waikoloa, HI, USA: IEEE, 2019: 1-6. [32] MCMAHAN H B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data [EB/OL]. (2017-02-28). https://arxiv.org/abs/1602.05629. [33] DEFFERRARD M, BRESSON X, VANDERGHEYNST P. Convolutional neural networks on graphs with fast localized spectral filtering [C]//30th Annual Conference on Neural Information Processing Systems. Barcelona, Spain: Curran Associates, Inc., 2016: 3844-3852. [34] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks [EB/OL] (2017-02-22). https://arxiv.org/abs/1609.02907. [35] HUANG Z H, HU R, GUO Y X, et al. DP-ADMM: ADMM-based distributed learning with differential privacy [J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 1002-1012. [36] DWORK C, MCSHERRY F, NISSIM K, et al. Calibrating noise to sensitivity in private data analysis [M]//Theory of cryptography. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006: 265-284. [37] HOLOHAN N, LEITH D J, MASON O. Optimal differentially private mechanisms for randomised response [J]. IEEE Transactions on Information Forensics and Security, 2017, 12(11): 2726-2735. [38] WANG Y, WU X, HU D. Using randomized response for differential privacy-preserving data collection [C]//Workshop Proceedings of the EDBT/ICDT 2016 Joint Conference. Bordeaux: CEUR-WS, 2016. [39] DU W L, ZHAN Z J. Using randomized response techniques for privacy-preserving data mining [C]//Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington, DC, USA: ACM, 2003: 505-510. [40] PHAN N, WU X T, HU H, et al. Adaptive Laplace mechanism: Differential privacy preservation in deep learning [C]//2017 IEEE International Conference on Data Mining (ICDM ). New Orleans, LA, USA. IEEE, 2017: 385-394. [41] COSTEA S, TAPUS N. Input validation for the Laplace differential privacy mechanism [C]//2015 20th International Conference on Control Systems and Computer Science. Bucharest, Romania: IEEE, 2015: 469-474. [42] ILVENTO C. Implementing the exponential mechanism with base-2 differential privacy [C]//Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security. Virtual Event, USA: ACM, 2020: 117-142. [43] GEIPING J, BAUERMEISTER H, DR¨OGE H, et al. Inverting gradients: How easy is it to break privacy in federated learning? [EB/OL]. (2020-09-11). https://arxiv.org/abs/2003.14053. |
[1] | Fu Zeyu, Fu Zhuang, Guan Yisheng. Vascular Interventional Surgery Path Planning and 3D Visual Navigation [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 472-481. |
[2] | Wang Baomin, Ding Hewei, Teng Fei, Liu Hongqin. Damage Detection of X-ray Image of Conveyor Belts with Steel Rope Cores Based on Improved FCOS Algorithm [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 309-318. |
[3] | Wang Gang, Guan Yaonan, Li Dewei. Two-Stream Auto-Encoder Network for Unsupervised Skeleton-Based Action Recognition [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 330-336. |
[4] | Diao Zijian, Cao Shuai, Li Wenwei, Liang Jianan, Wen Guilin, Huang Weixi, Zhang Shouming. Person Re-Identification Based on Spatial Feature Learning and Multi-Granularity Feature Fusion [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 363-374. |
[5] | ZHOU Su (周苏), ZHONG Zebin∗ (钟泽滨). Real-Time Ranging of Vehicles and Pedestrians for Mobile Application on Smartphones [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 1081-1090. |
[6] | YAN Congqiang1,2 (鄢丛强), GUO Zhengyun3,4 (郭正玉), CAI Yunze1,2∗∗ (蔡云泽). Data Augmentation of Ship Wakes in SAR Images Based on Improved CycleGAN [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 702-711. |
[7] | LV Feng(吕峰), WANG Xinyan* (王新彦), LI Lei(李磊), JIANG Quan(江泉), YI Zhengyang(易政洋). Tree Detection Algorithm Based on Embedded YOLO Lightweight Network [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 518-527. |
[8] | SONG Liboa (宋立博), FEI Yanqiongb (费燕琼). New Lite YOLOv4-Tiny Algorithm and Application on Crack Intelligent Detection [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 528-536. |
[9] | SHEN Ao1,2‡ (沈傲), HU Jisu 2,3‡ (胡冀苏), JIN Pengfei4 (金鹏飞), ZHOU Zhiyong2 (周志勇), QIAN Xusheng 2,3 (钱旭升), ZHENG Yi2 (郑毅), BAO Jie 4 (包婕), WANG Ximing4∗ (王希明), DAI Yakang1,2∗ (戴亚康). Ensemble Attention Guided Multi-SEANet Trained with Curriculum Learning for Noninvasive Prediction of Gleason Grade Groups from MRI [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(1): 109-119. |
[10] | XUE Yongboa (薛永波),LIU Zhaob (刘钊), LI Zeyanga (李泽阳),ZHU Pinga* (朱平). CT Image Segmentation Method of Composite Material Based on Improved Watershed Algorithm and U-Net Neural Network Model [J]. J Shanghai Jiaotong Univ Sci, 2023, 28(6): 783-792. |
[11] | QIN Chao1 (秦 超), WANG Yafei1 (王亚飞), ZHANG Yuchao2 (张宇超), YIN Chengliang1∗ (殷承良). Birds-Eye-View Semantic Segmentation and Voxels Semantic Segmentation Based on Frustum Voxels Modeling and Monocular Camera [J]. J Shanghai Jiaotong Univ Sci, 2023, 28(1): 100-113. |
[12] | FU Jiawei∗ (傅家威), ZHAO Xu (赵 旭). Action-aware Encoder-Decoder Network for Pedestrian Trajectory Prediction [J]. J Shanghai Jiaotong Univ Sci, 2023, 28(1): 20-27. |
[13] | SONG Hao-hao (宋好好), LU Zhen (陆 臻). Image Fusion Scheme Based on Nonsubsampled Contourlet and Block-Based Cosine Transform [J]. J Shanghai Jiaotong Univ Sci, 2012, 17(1): 8-012. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 50
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 418
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||