[1] LECUN Y, BENGIO Y, HINTON G. Deep learning [J]. Nature, 2015, 521(7553): 436-444.
[2] HUANG J, RATHOD V, SUN C, et al. Speed/accuracy trade-offs for modern convolutional object detectors [C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA: IEEE, 2017: 3296-3297.
[3] GIRSHICK R, DONAHUE J, DARRELL T, et al. Region-based convolutional networks for accurate object detection and segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(1): 142-158.
[4] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA: IEEE, 2014: 580-587.
[5] GIRSHICK R. Fast R-CNN [C]//2015 IEEE International Conference on Computer Vision. Santiago, Chile: IEEE, 2015: 1440-1448.
[6] REN S Q, HE K M, GIRSHICK R, et al. Faster RCNN: Towards real-time object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[7] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector [M]//Computer vision-ECCV 2016. Cham: Springer, 2016: 21-37.
[8] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE, 2016: 779-788.
[9] REDMON J, FARHADI A. YOLO9000: better, faster, stronger [C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA: IEEE, 2017: 6517-6525.
[10] REDMON J, FARHADI A. Yolov3: An incremental improvement [EB/OL]. (2018-04-08). https://arxiv.org/abs/1804.02767.
[11] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. Yolov4: Optimal speed and accuracy of object detection [EB/OL]. (2020-04-23). https://arxiv.org/abs/2004.10934.
[12] HOWARD A G, ZHU M, CHEN B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications [EB/OL]. (2017-04-17). https://arxiv.org/abs/1704.04861.
[13] SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: Inverted residuals and linear bottlenecks [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE, 2018: 4510-4520.
[14] HOWARD A, SANDLER M, CHEN B, et al. Searching for MobileNetV3 [C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV ). Seoul, Korea: IEEE, 2019: 1314-1324.
[15] YARAK K, WITAYANGKURN A, KRITIYUTANONT K, et al. Oil palm tree detection and health classification on high-resolution imagery using deep learning [J]. Agriculture, 2021, 11(2): 183.
[16] ITAKURA K, HOSOI F. Automatic tree detection from three-dimensional images reconstructed from 360? spherical camera using YOLO v2 [J]. Remote Sensing, 2020, 12(6): 988.
[17] WEINSTEIN B G, MARCONI S, BOHLMAN S A, et al. Cross-site learning in deep learning RGB tree crown detection [J]. Ecological Informatics, 2020, 56: 101061.
[18] ITAKURA K, HOSOI F. Automated tree detection from 3D lidar images using image processing and machine learning [J]. Applied Optics, 2019, 58(14): 3807-3811.
[19] MAJEED Y, ZHANG J, ZHANG X, et al. Deep learning based segmentation for automated training of apple trees on trellis wires [J]. Computers and Electronics in Agriculture, 2020, 170: 105277.
[20] XI Z X, HOPKINSON C, ROOD S B, et al. See the forest and the trees: Effective machine and deep learning algorithms for wood filtering and tree species classification from terrestrial laser scanning [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 168: 1-16.
|