J Shanghai Jiaotong Univ Sci ›› 2024, Vol. 29 ›› Issue (3): 414-427.doi: 10.1007/s12204-023-2616-9
• Automation & Computer Technologies • Previous Articles Next Articles
ZHANG Yanjun1,4,5,6,7 (张彦军), WANG Biyun2,3 (王碧云),CAI Yunze1,4,5,6,7∗ (蔡云泽)
Accepted:
2022-04-23
Online:
2024-05-28
Published:
2024-05-28
CLC Number:
ZHANG Yanjun(张彦军), WANG Biyun(王碧云),CAI Yunze (蔡云泽). Multi-Channel Based on Attention Network for Infrared Small Target Detection[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 414-427.
[1] CHEN M S, SUN W X, LI M Y, et al. Infrared small target detection under various complex backgrounds [J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(6): 2288-2294 (in Chinese). [2] ZHANG Y, JIA Z Y, ZHOU G R, et al. Infrared dimtarget detection based on multi-directional mixed template [J]. Air & Space Defense, 2019, 2(1): 64-69 (in Chinese). [3] YANG J, YANG J, WANG F L. An improved algorithm for multiple infrared targets tracking [J]. Journal of Shanghai Jiao Tong University, 2009, 43(3): 437-442 (in Chinese). [4] YANG Q L, ZHOU B H, ZHENG W, et al. Small infrared target detection based on fully convolutional network [J]. Infrared Technology, 2021, 43(4): 349-356(in Chinese). [5] LIU J M, MENG W H. Infrared small target detection based on fully convolutional neural network and visual saliency [J]. Acta Photonica Sinica, 2020, 49(7): 46-56(in Chinese). [6] DESHPANDE S D, ER M H, VENKATESWARLU R, et al. Max-mean and max-Median filters for detection of small targets [C]//SPIE’s International Symposium on Optical Science, Engineering, and Instrumentation. Denver: SPIE, 1999: 74-83. [7] BAI X Z, ZHOU F G. Analysis of new top-hat transformation and the application for infrared dim small target detection [J]. Pattern Recognition, 2010, 43(6): 2145-2156. [8] WANG B, DONG L L, ZHAO M, et al. Texture orientation-based algorithm for detecting infrared maritime targets [J]. Applied Optics, 2015, 54(15): 4689-4697. [9] CHEN C L, LI H, WEI Y T, et al. A local contrast method for small infrared target detection [J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1): 574-581. [10] HAN J H, MA Y, ZHOU B, et al. A robust infrared small target detection algorithm based on human visual system [J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(12): 2168-2172. [11] XIA C Q, LI X R, ZHAO L Y, et al. Infrared small target detection based on multiscale local contrast measure using local energy factor [J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(1): 157-161. [12] CHEN Y H, ZHANG G P, MA Y J, et al. Small infrared target detection based on fast adaptive masking and scaling with iterative segmentation [J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1-5. [13] WEI Y T, YOU X G, LI H. Multiscale patch-based contrast measure for small infrared target detection [J]. Pattern Recognition, 2016, 58: 216-226. [14] NIE J Y, QU S C, WEI Y T, et al. An infrared small target detection method based on multiscale local homogeneity measure [J]. Infrared Physics & Technology, 2018, 90: 186-194. [15] HAN J H, LIANG K, ZHOU B, et al. Infrared small target detection utilizing the multiscale relative local contrast measure [J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(4): 612-616. [16] LIU J, HE Z Q, CHEN Z L, et al. Tiny and dim infrared target detection based on weighted local contrast [J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(11): 1780-1784. [17] HAN J H, MORADI S, FARAMARZI I, et al. A local contrast method for infrared small-target detection utilizing a tri-layer window [J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(10): 1822-1826. [18] GAO C Q, MENG D Y, YANG Y, et al. Infrared patchimage model for small target detection in a single image [J]. IEEE Transactions on Image Processing, 2013, 22(12): 4996-5009. [19] ZHANG T F, WU H, LIU Y H, et al. Infrared small target detection based on non-convex optimization with lp-norm constraint [J]. Remote Sensing, 2019, 11(5): 559. [20] YANG P, DONG L L, XU W H. Infrared small maritime target detection based on integrated target saliency measure [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 2369-2386. [21] DAI Y M, WU Y Q, ZHOU F, et al. Asymmetric contextual modulation for infrared small target detection [C]//2021 IEEE Winter Conference on Applications of Computer Vision. Waikoloa: IEEE, 2021: 949-958. [22] DAI Y M, WU Y Q, ZHOU F, et al. Attentional local contrast networks for infrared small target detection [J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(11): 9813-9824. [23] LI B Y, XIAO C, WANG L G, et al. Dense nested attention network for infrared small target detection [J]. IEEE Transactions on Image Processing, 2022. https://doi.org/10.1109/TIP.2022.3199107. [24] SHI M S, WANG H. Infrared dim and small target detection based on denoising autoencoder network [J]. Mobile Networks and Applications, 2020, 25(4): 1469-1483. [25] DU J M, LU H Z, HU M F, et al. CNN-based infrared dim small target detection algorithm using targetoriented shallow-deep features and effective small anchor [J]. IET Image Processing, 2021, 15(1): 1-15. [26] ZHAO B, WANG C P, FU Q, et al. A novel pattern for infrared small target detection with generative adversarial network [J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(5): 4481-4492. [27] ZHANG Y, LIU S J, LI C L, et al. Application of deep learning method on ischemic stroke lesion segmentation [J]. Journal of Shanghai Jiao Tong University (Science), 2022, 27(1): 99-111. [28] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778. [29] CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation [DB/OL]. (2017-06-17). https://arxiv.org/abs/1706.05587 [30] XU J C, HE S M, YU D D, et al. Automatic segmentation method for cone-beam computed tomography image of the bone graft region within maxillary sinus based on the atrous spatial pyramid convolution network [J]. Journal of Shanghai Jiao Tong University (Science), 2021, 26(3): 298-305. [31] GUO M H, XU T X, LIU J J, et al. Attention mechanisms in computer vision: A survey [J]. Computational Visual Media, 2022, 8: 331-368. [32] HU J, SHEN L, SUN G. Squeeze-and-excitation networks [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132-7141. [33] GAO Z L, XIE J T, WANG Q L, et al. Global second-order pooling convolutional networks [C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 3019-3028. [34] WANG Q L, WU B G, ZHU P F, et al. ECA-net: Efficient channel attention for deep convolutional neural networks [C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 11531-11539. [35] LEE H, KIM H E, NAM H. SRM: A style-based recalibration module for convolutional neural networks [C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 1854-1862. [36] JADERBERG M, SIMONYAN K, ZISSERMAN A, et al. Spatial transformer networks [C]//29th International Conference on Neural Information Processing Systems. Montr′eal: NIPS, 2015: 1-9. [37] HU J, SHEN L, ALBANIE S, et al. Gather-excite: Exploiting feature context in convolutional neural networks [C]//32nd Conference on Neural Information Processing Systems. Montr′eal: NIPS, 2018: 1-11. [38] WANG X L, GIRSHICK R, GUPTA A, et al. Nonlocal neural networks [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7794-7803. [39] HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design [C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 13708-13717. [40] WANG H, ZHOU L P, WANG L. Miss detection vs. false alarm: Adversarial learning for small object segmentation in infrared images [C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 8508-8517. [41] ZHANG H, ZHANG L, YUAN D, et al. Infrared small target detection based on local intensity and gradient properties [J]. Infrared Physics & Technology, 2018, 89: 88-96. [42] AGHAZIYARATI S, MORADI S, TALEBI H. Small infrared target detection using absolute average difference weighted by cumulative directional derivatives [J]. Infrared Physics & Technology, 2019, 101: 78-87. [43] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module [M]//European conference on computer vision. Cham: Springer, 2018: 3-19. [44] MISRA D, NALAMADA T, ARASANIPALAI A U, et al. Rotate to attend: Convolutional triplet attention module [C]//2021 IEEE Winter Conference on Applications of Computer Vision. Waikoloa: IEEE, 2021: 3138-3147. |
[1] | Xiao Wenbo, Xiong Jiakai, Yu Lesheng, He Yinshui, Ma Guohong. Weld Defect Monitoring Based on Two-Stage Convolutional Neural Network [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 291-299. |
[2] | KE Jing1(柯晶), ZHU Junchao2 (朱俊超), YANG Xin1(杨鑫), ZHANG Haolin3 (张浩林), SUN Yuxiang1(孙宇翔), WANG Jiayi1(王嘉怡), LU Yizhou4(鲁亦舟), SHEN Yiqing5(沈逸卿), LIU Sheng6(刘晟), JIANG Fusong7(蒋伏松), HUANG Qin8(黄琴). TshFNA-Examiner: A Nuclei Segmentation and Cancer Assessment Framework for Thyroid Cytology Image [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 945-957. |
[3] | LI Mingai1, 2∗ (李明爱), WEI Lina1 (魏丽娜). Motor Imagery Classification Based on Plain Convolutional Neural Network and Linear Interpolation [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 958-966. |
[4] | GENG Zongsheng1 (耿宗盛), ZHAO Dongdong1,2 (赵东东), ZHOU Xingwen1 (周兴文), YAN Lei1 (闫磊), YAN Shi1,2∗ (阎石). Leader-Following Consensus of Multi-Agent Systems via Fully Distributed Event-Based Control [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 640-645. |
[5] | LIU Zengmin (刘增敏), WANG Shentao(王申涛), YAO Lixiu(姚莉秀), CAI Yunze(蔡云泽). Online Multi-Object Tracking Under Moving Unmanned Aerial Vehicle Platform Based on Object Detection and Feature Extraction Network [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 388-399. |
[6] | WANG Yujuan1 (王玉娟),LI Wengang2 (李文刚),LIU .Jianyong3 (刘建勇),CHEN Guangxue4 (陈广学),WANG Jun1*(汪军). Color Prediction Model of Gray Hybrid Multifilament Fabric [J]. J Shanghai Jiaotong Univ Sci, 2023, 28(6): 802-808. |
[7] | LIU Zhuoran (刘卓然), ZHAO Xu∗ (赵旭). Multilevel Disparity Reconstruction Network for Real-Time Stereo Matching [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(5): 715-722. |
[8] | SU Chong∗ (宿翀), LÜ Jing (吕晶), ZHANG Danyang (张丹阳), LI Hongguang∗ (李宏光). Affective Preferences Mining Approach with Applications in Process Control [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(5): 737-746. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 56
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 330
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||