J Shanghai Jiaotong Univ Sci ›› 2025, Vol. 30 ›› Issue (5): 855-865.doi: 10.1007/s12204-024-2697-0
• Computing & Computer Technologies • Previous Articles Next Articles
吴亚磊,李敬华,孔德慧,李倩星,尹宝才
Received:
2023-08-08
Accepted:
2023-08-29
Online:
2025-09-26
Published:
2024-01-16
CLC Number:
WU Yalei, LI Jinghua, KONG Dehui, LI Qianxing, YIN Baocai. 3D Hand Pose Estimation Using Semantic Dynamic Hypergraph Convolutional Networks[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 855-865.
[1] DOOSTI B, NAHA S, MIRBAGHERI M, et al. Hope-net: A graph-based model for hand-object pose estimation[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 6608-6617. [2] GE L H, REN Z, LI Y C, et al. 3D hand shape and pose estimation from a single RGB image[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019:10833-10842. [3] GUO S X, RIGALL E, QI L, et al. Graph-based CNNs with self-supervised module for 3d hand pose estimation from monocular RGB[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 31(4): 1514-1525. [4] CHEN L J, LIN S Y, XIE Y S, et al. Temporal-aware self-supervised learning for 3d hand pose and mesh estimation in videos[C]// 2021 IEEE Winter Conference on Applications of Computer Vision. Waikoloa: IEEE, 2021: 1050-1059. [5] XIONG F, ZHANG B S, XIAO Y, et al. A2J: Anchor-to-joint regression network for 3d articulated pose estimation from a single depth image[C]// 2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 793-802. [6] YUAN S X, GARCIA-HERNANDO G, STENGER B, et al. Depth-based 3d hand pose estimation: from current achievements to future goals[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 2636-2645. [7] ZIMMERMANN C, BROX T. Learning to estimate 3d hand pose from single RGB images[C]// 2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 4903-4911. [8] PANTELERIS P, ARGYROS A. Back to RGB: 3d tracking of hands and hand-object interactions based on short-baseline stereo[C]// 2017 IEEE International Conference on Computer Vision Workshops. Venice: IEEE, 2017: 575-584. [9] CAI Y J, GE L H, CAI J F, et al. Weakly-supervised 3d hand pose estimation from monocular RGB images[C]// Proceedings of the European Conference on Computer Vision, Munich: Springer, 2018: 666-682. [10] GUO S X, RIGALL E, JU Y K, et al. 3D hand pose estimation from monocular RGB with feature interaction module[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(8): 5293-5306. [11] SIMON T, JOO H, MATTHEWS I, et al. Hand keypoint detection in single images using multiview bootstrapping[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu: IEEE, 2017: 1145-1153. [12] YU J, TAO D C, WANG M. Adaptive hypergraph learning and its application in image classification[J]. IEEE Transactions on Image Processing, 2012, 21(7): 3262-3272. [13] JIANG J W, WEI Y X, FENG Y F, et al. Dynamic hypergraph neural networks[C]// Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence. Freiburg: IJCAI, 2019: 2635-2641. [14] CAI Y, GE L, LIU J, et al. Exploiting spatial-temporal relationships for 3D pose estimation via graph convolutional networks[C]// 2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019:2272-2281. [15] CAI Y J, GE L H, CAI J, et al. 3D hand pose estimation using synthetic data and weakly labeled RGB images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 43(11): 3739-3753. [16] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778. [17] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[C]// Proceedings of 5th International Conference on Learning Representations. Toulon: ICLR, 2017. [18] FENG Y F, YOU H X, ZHANG Z Z, et al. Hypergraph neural networks[C]// The Thirty-Third AAAI Conference on Artificial Intelligence. Hilton Hawaiian Village: AAAI Press, 2019, 33(01): 3558-3565. [19] LIU S, LV P, ZHANG Y, et al. Semi-dynamic hypergraph neural network for 3d pose estimation[C]// Proceedings of the twenty-ninth International Joint Conference on Artificial Intelligence, Yokohama, Japan: Local Organizing Committee, 2020: 782-788. [20] XU X X, ZOU Q, LIN X. Adaptive hypergraph neural network for multi-person pose estimation[C]// Proceedings of the AAAI Conference on Artificial Intelligence. Vancouver: AAAI Press, 2022, 36(3): 2955-2963. [21] ZHAO L, PENG X, TIAN Y, et al. Semantic graph convolutional networks for 3d human pose regression[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 3425-3435. [22] ZHANG J W, JIAO J B, CHEN M L, et al. A hand pose tracking benchmark from stereo matching[C]// 2017 IEEE International Conference on Image Processing. Beijing: IEEE, 2017: 982-986. [23] ZIMMERMANN C, CEYLAN D, YANG J, et al. Freihand: a dataset for markerless capture of hand pose and shape from single RGB images[C]// 2019 IEEE/CVF International Conference on Computer Vision. Seoul:IEEE, 2019:813-822. [24] GE L H, CAI Y J, WENG J W, et al. Hand Pointnet: 3D hand pose estimation using point sets[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE 2018: 8417-8426. [25] YANG L X, LI J S, XU W Q, et al. Bihand: recovering hand mesh with multi-stage bisected hourglass networks[C]// Proceedings of the British Machine Vision Conference. Virtual: British Machine Vision Association, 2020. [26] SPURR A, SONG J, PARK S, et al. Cross-modal deep variational hand pose estimation[C]// 018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 89-98. [27] YANG L L, LI S L, LEE D, et al. Aligning latent spaces for 3d hand pose estimation[C]// 2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 2335-2343. [28] THEODORIDIS T, CHATZIS T, SOLACHIDIS V, et al. Cross-modal variational alignment of latent spaces[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Seattle: IEEE, 2020: 960-961. [29] STERGIOULAS A, CHATZIS T, KONSTANTINIDIS D, et al. 3D Hand pose estimation via aligned latent space injection and kinematic losses[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Nashville: IEEE, 2021: 1730-1739. [30] CUI Y, LI M, GAO Y, et al. Camera distance helps 3D hand pose estimated from a single RGB image[J]. Graphical Models, 2023, 127:101179. [31] KOURBANE I, GENC Y. A hybrid classification-regression approach for 3D hand pose estimation using graph convolutional networks[J]. Signal Processing Image Communication, 2022:101. [32] HASSON Y., VAROL G., TZIONAS D, et al. Learning joint reconstruction of hands and manipulated objects[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach:IEEE, 2019:11807–11816.
|
[1] | DONG Zhaoxian, YU Shuo, SHEN Yanming. Multi-Scale Dynamic Hypergraph Convolutional Network for Traffic Flow Forecasting [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 880-888. |
[2] | Ma Jin, Ren Ze, Zhang Tongtong, Ding Ying, Lu Yilei, Peng Yinghong. Transformer-Based Contrastive Learning Method for Automated Sleep Stages Classification [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(4): 720-732. |
[3] | Xiao Wenbo, Xiong Jiakai, Yu Lesheng, He Yinshui, Ma Guohong. Weld Defect Monitoring Based on Two-Stage Convolutional Neural Network [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 291-299. |
[4] | KE Jing1(柯晶), ZHU Junchao2 (朱俊超), YANG Xin1(杨鑫), ZHANG Haolin3 (张浩林), SUN Yuxiang1(孙宇翔), WANG Jiayi1(王嘉怡), LU Yizhou4(鲁亦舟), SHEN Yiqing5(沈逸卿), LIU Sheng6(刘晟), JIANG Fusong7(蒋伏松), HUANG Qin8(黄琴). TshFNA-Examiner: A Nuclei Segmentation and Cancer Assessment Framework for Thyroid Cytology Image [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 945-957. |
[5] | LI Mingai1, 2∗ (李明爱), WEI Lina1 (魏丽娜). Motor Imagery Classification Based on Plain Convolutional Neural Network and Linear Interpolation [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 958-966. |
[6] | GENG Zongsheng1 (耿宗盛), ZHAO Dongdong1,2 (赵东东), ZHOU Xingwen1 (周兴文), YAN Lei1 (闫磊), YAN Shi1,2∗ (阎石). Leader-Following Consensus of Multi-Agent Systems via Fully Distributed Event-Based Control [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 640-645. |
[7] | LIU Zengmin (刘增敏), WANG Shentao(王申涛), YAO Lixiu(姚莉秀), CAI Yunze(蔡云泽). Online Multi-Object Tracking Under Moving Unmanned Aerial Vehicle Platform Based on Object Detection and Feature Extraction Network [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 388-399. |
[8] | ZHANG Yanjun(张彦军), WANG Biyun(王碧云),CAI Yunze (蔡云泽). Multi-Channel Based on Attention Network for Infrared Small Target Detection [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 414-427. |
[9] | WANG Yujuan1 (王玉娟),LI Wengang2 (李文刚),LIU .Jianyong3 (刘建勇),CHEN Guangxue4 (陈广学),WANG Jun1*(汪军). Color Prediction Model of Gray Hybrid Multifilament Fabric [J]. J Shanghai Jiaotong Univ Sci, 2023, 28(6): 802-808. |
[10] | LIU Zhuoran (刘卓然), ZHAO Xu∗ (赵旭). Multilevel Disparity Reconstruction Network for Real-Time Stereo Matching [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(5): 715-722. |
[11] | SU Chong∗ (宿翀), LÜ Jing (吕晶), ZHANG Danyang (张丹阳), LI Hongguang∗ (李宏光). Affective Preferences Mining Approach with Applications in Process Control [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(5): 737-746. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||