J Shanghai Jiaotong Univ Sci ›› 2025, Vol. 30 ›› Issue (5): 880-888.doi: 10.1007/s12204-023-2682-z
• Computing & Computer Technologies • Previous Articles Next Articles
董兆贤,于硕,申彦明
Received:
2023-06-29
Accepted:
2023-07-20
Online:
2025-09-26
Published:
2023-12-21
CLC Number:
DONG Zhaoxian, YU Shuo, SHEN Yanming. Multi-Scale Dynamic Hypergraph Convolutional Network for Traffic Flow Forecasting[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 880-888.
[1] ZHANG J P, WANG F
Y, WANG K F, et al. Data-driven intelligent transportation systems: A survey
[J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(4): 1624-1639.
[2] XIA Y, SHI Z Q. Multi-head attention
spatio-temporal convolutional graph network for traffic flow prediction[J]. Application
Research of Computers, 2023, 40(3): 776-770 (in Chinese).
[3] REN
J H, ZHU Y, MENG X F, et al. Prediction of urban traffic flow using dynamic spatio-temporal
neural network [J]. Journal of Chinese Computer Systems, 2023, 44(3): 529-535
(in Chinese).
[4] LI
L, HU Z Y, YANG X B. Intelligent analysis of abnormal vehicle behavior based on
a digital twin [J]. Journal of Shanghai Jiao Tong University (Science), 2021, 26(5):
587-597.
[5] KIPF
T N, WELLING M. Semi-supervised classification with graph convolutional
networks [DB/OL]. (2016-09-09). https://arxiv.org/abs/1609.02907
[6] LI
Y G, YU R, SHAHABI C, et al. Diffusion convolutional recurrent neural network:
Data-driven traffic forecasting [DB/OL]. (2017-07-06). https://arxiv.org/abs/1707.01926
[7] WU
Z H, PAN S R, LONG G D, et al. Graph wavenet for deep spatial-temporal graph
modeling [C]// 28th International Joint Conference on Artificial Intelligence. Macao:
ACM, 2019: 1907-1913.
[8] DRUCKER
H, BURGES C J, KAUFMAN L, et al. Duality, geometry, and support vector
regression [M]//Advances in neural information processing systems 14. Cambridge:
The MIT
Press, 2002
[9] MAKRIDAKIS
S, HIBON M. ARMA models and the box-jenkins methodology [J]. Journal of Forecasting,
1997, 16(3): 147-163.
[10]
YU B, YIN H T, ZHU Z X. Spatio-temporal graph convolutional
networks: A deep learning framework for traffic forecasting [C]// Twenty-Seventh
International Joint Conference on Artificial Intelligence. Stockholm: IJCAI,
2018: 3634-3640.
[11]
BAI L, YAO L N, LI C, et al. Adaptive graph convolutional recurrent network for
traffic forecasting [C]// 34th International Conference on Neural Information Processing
Systems. Vancouver: NIPS, 2020: 17804-17815.
[12]
SONG C, LIN Y F, GUO S N, et al. Spatial-temporal synchronous graph
convolutional networks: A new framework for spatial-temporal network data
forecasting [J]. Proceedings of the AAAI Conference on Artificial Intelligence,
2020, 34(1): 914-921.
[13]
GUO S N, LIN Y F, FENG N, et al. Attention based spatial-temporal graph
convolutional networks for traffic flow forecasting [J]. Proceedings of the
AAAI Conference on Artificial Intelligence, 2019, 33(1): 922-929.
[14]
FANG Z, LONG Q Q, SONG G J, et al. Spatial-temporal graph ODE networks for
traffic flow forecasting [C]// 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining. Singapore. New York: ACM, 2021: 364-373.
[15]
WANG Y, ZHU D. SHGCN: A hypergraph-based deep learning model for spatiotemporal
traffic flow prediction [C]// 5th ACM SIGSPATIAL International Workshop on AI
for Geographic Knowledge Discovery. Seattle: ACM, 2022: 30-39.
[16]
LI M Z, ZHU Z X. Spatial-temporal fusion graph neural networks for traffic flow
forecasting [J]. Proceedings of the AAAI Conference on Artificial Intelligence,
2021, 35(5): 4189-4196.
[17] LAN S, MA Y, HUANG W, et al. DSTAGNN: Dynamic
spatial-temporal aware graph neural network for traffic flow forecasting[C]// 39th
International Conference on Machine Learning. San Diego: IMLS, 2022: 11906-11917.
[18]
WANG J C, ZHANG Y, WEI Y, et al. Metro passenger flow prediction via dynamic
hypergraph convolution networks [J]. IEEE Transactions on Intelligent
Transportation Systems, 2021, 22(12): 7891-7903.
[19]
FENG Y F, YOU H X, ZHANG Z Z, et al. Hypergraph neural networks [J]. Proceedings
of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 3558-3565.
[20]
JIANG J W, WEI Y X, FENG Y F, et al. Dynamic hypergraph neural networks [C]//
Twenty-Eighth International Joint Conference on Artificial Intelligence. Macao:
IJCAI, 2019: 2635-2641.
[21]
DING K Z, WANG J L, LI J D, et al. Be more with less: Hypergraph attention networks
for inductive text classification [C]// 2020 Conference on Empirical Methods in
Natural Language Processing. Stroudsburg: ACL, 2020: 4927-4936.
[22]
YADATI N, NIMISHAKAVI M, YADAV P, et al. HyperGCN: A new method of training
graph convolutional networks on hypergraphs [DB/OL]. (2018-09-07). https://arxiv.org/abs/1809.02589
[23]
YIN N, FENG F L, LUO Z G, et al. Dynamic hypergraph convolutional network [C]//2022
IEEE 38th International Conference on Data Engineering. Kuala Lumpur: IEEE,
2022: 1621-1634.
[24] Wang H, Peng J, Huang F, et al. MICN: Multi-scale
local global context modeling for long-term series forecasting[C]// The
Eleventh International Conference on Learning Representations. Kigali: ICLR, 2022.
[25] Yin H, Zhang F, Li T R. Short-time traffic flow
forecasting based on multi-adjacent graph and multi-head attention
mechanism[J]. Computer Science, 2023, 50(4): 40-46 (in Chinese).
|
[1] | WU Yalei, LI Jinghua, KONG Dehui, LI Qianxing, YIN Baocai. 3D Hand Pose Estimation Using Semantic Dynamic Hypergraph Convolutional Networks [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 855-865. |
[2] | Ma Jin, Ren Ze, Zhang Tongtong, Ding Ying, Lu Yilei, Peng Yinghong. Transformer-Based Contrastive Learning Method for Automated Sleep Stages Classification [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(4): 720-732. |
[3] | Xiao Wenbo, Xiong Jiakai, Yu Lesheng, He Yinshui, Ma Guohong. Weld Defect Monitoring Based on Two-Stage Convolutional Neural Network [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 291-299. |
[4] | KE Jing1(柯晶), ZHU Junchao2 (朱俊超), YANG Xin1(杨鑫), ZHANG Haolin3 (张浩林), SUN Yuxiang1(孙宇翔), WANG Jiayi1(王嘉怡), LU Yizhou4(鲁亦舟), SHEN Yiqing5(沈逸卿), LIU Sheng6(刘晟), JIANG Fusong7(蒋伏松), HUANG Qin8(黄琴). TshFNA-Examiner: A Nuclei Segmentation and Cancer Assessment Framework for Thyroid Cytology Image [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 945-957. |
[5] | LI Mingai1, 2∗ (李明爱), WEI Lina1 (魏丽娜). Motor Imagery Classification Based on Plain Convolutional Neural Network and Linear Interpolation [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 958-966. |
[6] | GENG Zongsheng1 (耿宗盛), ZHAO Dongdong1,2 (赵东东), ZHOU Xingwen1 (周兴文), YAN Lei1 (闫磊), YAN Shi1,2∗ (阎石). Leader-Following Consensus of Multi-Agent Systems via Fully Distributed Event-Based Control [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 640-645. |
[7] | LIU Zengmin (刘增敏), WANG Shentao(王申涛), YAO Lixiu(姚莉秀), CAI Yunze(蔡云泽). Online Multi-Object Tracking Under Moving Unmanned Aerial Vehicle Platform Based on Object Detection and Feature Extraction Network [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 388-399. |
[8] | ZHANG Yanjun(张彦军), WANG Biyun(王碧云),CAI Yunze (蔡云泽). Multi-Channel Based on Attention Network for Infrared Small Target Detection [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 414-427. |
[9] | WANG Yujuan1 (王玉娟),LI Wengang2 (李文刚),LIU .Jianyong3 (刘建勇),CHEN Guangxue4 (陈广学),WANG Jun1*(汪军). Color Prediction Model of Gray Hybrid Multifilament Fabric [J]. J Shanghai Jiaotong Univ Sci, 2023, 28(6): 802-808. |
[10] | LIU Zhuoran (刘卓然), ZHAO Xu∗ (赵旭). Multilevel Disparity Reconstruction Network for Real-Time Stereo Matching [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(5): 715-722. |
[11] | SU Chong∗ (宿翀), LÜ Jing (吕晶), ZHANG Danyang (张丹阳), LI Hongguang∗ (李宏光). Affective Preferences Mining Approach with Applications in Process Control [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(5): 737-746. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||