[1] LU H C, LI P X, WANG D. Visual object tracking: A survey [J]. Pattern Recognition and Artificial Intelligence, 2018, 31(1): 61-76 (in Chinese).
[2] BABENKO B, YANG M H, BELONGIE S. Robust object tracking with online multiple instance learning [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1619-1632.
[3] KALAL Z, MIKOLAJCZYK K, MATAS J. Trackinglearning-detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(7): 1409-1422.
[4] AVIDAN S. Support vector tracking [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(8): 1064-1072.
[5] HARE S, GOLODETZ S, SAFFARI A, et al. Struck: Structured output tracking with kernels [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(10): 2096-2109.
[6] SAFFARI A, LEISTNER C, SANTNER J, et al. Online random forests [C]//2009 IEEE 12th International Conference on Computer Vision Workshops. Kyoto: IEEE, 2009: 1393-1400.
[7] BABENKO B, YANG M H, BELONGIE S. Visual tracking with online multiple instance learning [C]//2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL: IEEE, 2009: 983-990.
[8] JIANG N, LIU W Y, WU Y. Learning adaptive metric for robust visual tracking [J]. IEEE Transactions on Image Processing, 2011, 20(8): 2288-2300.
[9] BOLME D S, BEVERIDGE J R, DRAPER B A, et al. Visual object tracking using adaptive correlation filters [C]//2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco, CA: IEEE, 2010: 2544-2550.
[10] BHAT G, DANELLJAN M, VAN GOOL L, et al. Learning discriminative model prediction for tracking [C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 6181-6190.
[11] DANELLJAN M, VAN GOOL L, TIMOFTE R. Probabilistic regression for visual tracking [C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, WA: IEEE, 2020: 7181-7190.
[12] HAN G, DU H, LIU J X, et al. Fully conventional anchor-free Siamese networks for object tracking [J]. IEEE Access, 2019, 7: 123934-123943.
[13] BERTINETTO L, VALMADRE J, HENRIQUES J F, et al. Fully-convolutional Siamese networks for object tracking [M]//Computer vision – ECCV 2016 Workshops. Cham: Springer, 2016: 850-865.
[14] LI B, YAN J J, WU W, et al. High performance visual tracking with Siamese region proposal network [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT: IEEE, 2018: 8971-8980.
[15] WANG Q, TENG Z, XING J L, et al. Learning attentions: residual attentional Siamese network for high performance online visual tracking [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT: IEEE, 2018: 4854-4863.
[16] LI B, WU W, WANG Q, et al. SiamRPN++: Evolution of Siamese visual tracking with very deep networks [C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA: IEEE, 2019: 4277-4286.
[17] FAN H, LING H B. Siamese cascaded region proposal networks for real-time visual tracking [C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA: IEEE, 2019: 7944-7953.
[18] GUO D Y, WANG J, CUI Y, et al. SiamCAR: Siamese fully convolutional classification and regression for visual tracking [C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, WA: IEEE, 2020: 6268-6276.
[19] XU Y D, WANG Z Y, LI Z X, et al. SiamFC++: towards robust and accurate visual tracking with target estimation guidelines [J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 12549-12556.
[20] WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module [M]//Computer vision – ECCV 2018. Cham: Springer, 2018: 3-19.
[21] KALMAN R E. A new approach to linear filtering and prediction problems [J]. Journal of Basic Engineering, 1960, 82(1): 35-45.
[22] ISARD M, BLAKE A. Condensation: Conditional density propagation for visual tracking [J]. International Journal of Computer Vision, 1998, 29: 5-28.
[23] HUANG L H, ZHAO X, HUANG K Q. GOT-10k: A large high-diversity benchmark for generic object tracking in the wild [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(5): 1562-1577.
[24] MUELLER M, SMITH N, GHANEM B. A benchmark and simulator for UAV tracking [M]//Computer vision — ECCV 2016. Cham: Springer, 2016: 445-461.
[25] FAN H, LIN L T, YANG F, et al. LaSOT: A highquality benchmark for large-scale single object tracking [C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA: IEEE, 2019: 5369-5378.
[26] JIANG B, LUO R, MAO J, et al. Acquisition of localization confidence for accurate object detection [M]//Computer vision — ECCV 2018. Cham: Springer, 2018: 784-799.
[27] DANELLJAN M, BHAT G, KHAN F S, et al. ATOM: Accurate tracking by overlap maximization [C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA: IEEE, 2019: 4655-4664.
[28] WANG Q, GAO J, XING J L, et al. DCFNet: Discriminant correlation filters network for visual tracking [EB/OL]. (2017-04-13). https://arxiv.org/abs/1704.04057.
[29] DANELLJAN M, H¨AGER G, KHAN F S, et al. Learning spatially regularized correlation filters for visual tracking [C]//2015 IEEE International Conference on Computer Vision. Santiago, Chile: IEEE, 2015: 4310-4318.
[30] DANELLJAN M, H¨AGER G, KHAN F S, et al. Adaptive decontamination of the training set: A unified formulation for discriminative visual tracking [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV: IEEE, 2016: 1430-1438.
[31] DANELLJAN M, BHAT G, KHAN F S, et al. ECO: efficient convolution operators for tracking [C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI: IEEE, 2017: 6931-6939.
[32] WU Y, LIM J, YANG M H. Online object tracking: A benchmark [C]//2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland, OR: IEEE, 2013: 2411-2418.
[33] KRISTAN M, LEONARDIS A, MATAS J, et al. The sixth visual object tracking VOT2018 challenge results [M]//Computer vision – ECCV 2018 Workshops. Cham: Springer, 2019: 3-53.
[34] CHEN Z. Bayesian filtering: From Kalman filters to particle filters, and beyond [J]. Statistics, 2003, 182(1): 1-69.
[35] MARSHALL A W. The use of multi-stage sampling schemes in Monte Carlo computations [R]. New York: Rand Corp Santa Monica Calif, 1954.
[36] HANDSCHIN J E, MAYNE D Q. Monte Carlo techniques to estimate the conditional expectation in multi-stage non-linear filtering [J]. International Journal of Control, 1969, 9(5): 547-559.
[37] KONG A, LIU J S, WONG W H. Sequential imputations and Bayesian missing data problems [J]. Journal of the American Statistical Association, 1994, 89(425): 278-288.
[38] KITAGAWA G. Monte Carlo filter and smoother for non-Gaussian nonlinear state space models [J]. Journal of Computational and Graphical Statistics, 1996, 5(1): 1-25.
[39] DEL MORAL P, JACOD J, PROTTER P. The Monte-Carlo method for filtering with discrete-time observations [J]. Probability Theory and Related Fields, 2001, 120(3): 346-368.
[40] CARPENTER J, CLIFFORD P, FEARNHEAD P. Improved particle filter for nonlinear problems [J]. IEE Proceedings-Radar, Sonar and Navigation, 1999, 146(1): 2.
[41] CARPENTER J, CLIFFORD P, FEARNHEAD P. Building robust simulation-based filters for evolving data sets [R]. Oxford: University of Oxford, 1999.
[42] KRISTAN M, MATAS J, LEONARDIS A, et al. The seventh visual object tracking VOT2019 challenge results [C]//2019 IEEE/CVF International Conference on Computer Vision Workshop. Seoul: IEEE, 2019: 2206-2241.
[43] DANELLJAN M, ROBINSON A, SHAHBAZ KHAN F, et al. Beyond correlation filters: Learning continuous convolution operators for visual tracking [M]//Computer vision — ECCV 2016. Cham: Springer, 2016: 472-488.
[44] HELD D, THRUN S, SAVARESE S. Learning to track at 100 FPS with deep regression networks [M]//Computer vision — ECCV 2016. Cham: Springer, 2016: 749-765.
[45] VALMADRE J, BERTINETTO L, HENRIQUES J, et al. End-to-end representation learning for correlation filter based tracking [C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI: IEEE, 2017: 5000-5008.
|