[1] CHEN M S, SUN W X, LI M Y, et al. Infrared small target detection under various complex backgrounds [J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(6): 2288-2294 (in Chinese).
[2] ZHANG Y, JIA Z Y, ZHOU G R, et al. Infrared dimtarget detection based on multi-directional mixed template [J]. Air & Space Defense, 2019, 2(1): 64-69 (in Chinese).
[3] YANG J, YANG J, WANG F L. An improved algorithm for multiple infrared targets tracking [J]. Journal of Shanghai Jiao Tong University, 2009, 43(3): 437-442 (in Chinese).
[4] YANG Q L, ZHOU B H, ZHENG W, et al. Small infrared target detection based on fully convolutional network [J]. Infrared Technology, 2021, 43(4): 349-356(in Chinese).
[5] LIU J M, MENG W H. Infrared small target detection based on fully convolutional neural network and visual saliency [J]. Acta Photonica Sinica, 2020, 49(7): 46-56(in Chinese).
[6] DESHPANDE S D, ER M H, VENKATESWARLU R, et al. Max-mean and max-Median filters for detection of small targets [C]//SPIE’s International Symposium on Optical Science, Engineering, and Instrumentation. Denver: SPIE, 1999: 74-83.
[7] BAI X Z, ZHOU F G. Analysis of new top-hat transformation and the application for infrared dim small target detection [J]. Pattern Recognition, 2010, 43(6): 2145-2156.
[8] WANG B, DONG L L, ZHAO M, et al. Texture orientation-based algorithm for detecting infrared maritime targets [J]. Applied Optics, 2015, 54(15): 4689-4697.
[9] CHEN C L, LI H, WEI Y T, et al. A local contrast method for small infrared target detection [J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1): 574-581.
[10] HAN J H, MA Y, ZHOU B, et al. A robust infrared small target detection algorithm based on human visual system [J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(12): 2168-2172.
[11] XIA C Q, LI X R, ZHAO L Y, et al. Infrared small target detection based on multiscale local contrast measure using local energy factor [J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(1): 157-161.
[12] CHEN Y H, ZHANG G P, MA Y J, et al. Small infrared target detection based on fast adaptive masking and scaling with iterative segmentation [J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1-5.
[13] WEI Y T, YOU X G, LI H. Multiscale patch-based contrast measure for small infrared target detection [J]. Pattern Recognition, 2016, 58: 216-226.
[14] NIE J Y, QU S C, WEI Y T, et al. An infrared small target detection method based on multiscale local homogeneity measure [J]. Infrared Physics & Technology, 2018, 90: 186-194.
[15] HAN J H, LIANG K, ZHOU B, et al. Infrared small target detection utilizing the multiscale relative local contrast measure [J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(4): 612-616.
[16] LIU J, HE Z Q, CHEN Z L, et al. Tiny and dim infrared target detection based on weighted local contrast [J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(11): 1780-1784.
[17] HAN J H, MORADI S, FARAMARZI I, et al. A local contrast method for infrared small-target detection utilizing a tri-layer window [J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(10): 1822-1826.
[18] GAO C Q, MENG D Y, YANG Y, et al. Infrared patchimage model for small target detection in a single image [J]. IEEE Transactions on Image Processing, 2013, 22(12): 4996-5009.
[19] ZHANG T F, WU H, LIU Y H, et al. Infrared small target detection based on non-convex optimization with lp-norm constraint [J]. Remote Sensing, 2019, 11(5): 559.
[20] YANG P, DONG L L, XU W H. Infrared small maritime target detection based on integrated target saliency measure [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 2369-2386.
[21] DAI Y M, WU Y Q, ZHOU F, et al. Asymmetric contextual modulation for infrared small target detection [C]//2021 IEEE Winter Conference on Applications of Computer Vision. Waikoloa: IEEE, 2021: 949-958.
[22] DAI Y M, WU Y Q, ZHOU F, et al. Attentional local contrast networks for infrared small target detection [J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(11): 9813-9824.
[23] LI B Y, XIAO C, WANG L G, et al. Dense nested attention network for infrared small target detection [J]. IEEE Transactions on Image Processing, 2022. https://doi.org/10.1109/TIP.2022.3199107.
[24] SHI M S, WANG H. Infrared dim and small target detection based on denoising autoencoder network [J]. Mobile Networks and Applications, 2020, 25(4): 1469-1483.
[25] DU J M, LU H Z, HU M F, et al. CNN-based infrared dim small target detection algorithm using targetoriented shallow-deep features and effective small anchor [J]. IET Image Processing, 2021, 15(1): 1-15.
[26] ZHAO B, WANG C P, FU Q, et al. A novel pattern for infrared small target detection with generative adversarial network [J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(5): 4481-4492.
[27] ZHANG Y, LIU S J, LI C L, et al. Application of deep learning method on ischemic stroke lesion segmentation [J]. Journal of Shanghai Jiao Tong University (Science), 2022, 27(1): 99-111.
[28] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
[29] CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation [DB/OL]. (2017-06-17). https://arxiv.org/abs/1706.05587
[30] XU J C, HE S M, YU D D, et al. Automatic segmentation method for cone-beam computed tomography image of the bone graft region within maxillary sinus based on the atrous spatial pyramid convolution network [J]. Journal of Shanghai Jiao Tong University (Science), 2021, 26(3): 298-305.
[31] GUO M H, XU T X, LIU J J, et al. Attention mechanisms in computer vision: A survey [J]. Computational Visual Media, 2022, 8: 331-368.
[32] HU J, SHEN L, SUN G. Squeeze-and-excitation networks [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132-7141.
[33] GAO Z L, XIE J T, WANG Q L, et al. Global second-order pooling convolutional networks [C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 3019-3028.
[34] WANG Q L, WU B G, ZHU P F, et al. ECA-net: Efficient channel attention for deep convolutional neural networks [C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 11531-11539.
[35] LEE H, KIM H E, NAM H. SRM: A style-based recalibration module for convolutional neural networks [C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 1854-1862.
[36] JADERBERG M, SIMONYAN K, ZISSERMAN A, et al. Spatial transformer networks [C]//29th International Conference on Neural Information Processing Systems. Montr′eal: NIPS, 2015: 1-9.
[37] HU J, SHEN L, ALBANIE S, et al. Gather-excite: Exploiting feature context in convolutional neural networks [C]//32nd Conference on Neural Information Processing Systems. Montr′eal: NIPS, 2018: 1-11.
[38] WANG X L, GIRSHICK R, GUPTA A, et al. Nonlocal neural networks [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7794-7803.
[39] HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design [C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 13708-13717.
[40] WANG H, ZHOU L P, WANG L. Miss detection vs. false alarm: Adversarial learning for small object segmentation in infrared images [C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 8508-8517.
[41] ZHANG H, ZHANG L, YUAN D, et al. Infrared small target detection based on local intensity and gradient properties [J]. Infrared Physics & Technology, 2018, 89: 88-96.
[42] AGHAZIYARATI S, MORADI S, TALEBI H. Small infrared target detection using absolute average difference weighted by cumulative directional derivatives [J]. Infrared Physics & Technology, 2019, 101: 78-87.
[43] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module [M]//European conference on computer vision. Cham: Springer, 2018: 3-19.
[44] MISRA D, NALAMADA T, ARASANIPALAI A U, et al. Rotate to attend: Convolutional triplet attention module [C]//2021 IEEE Winter Conference on Applications of Computer Vision. Waikoloa: IEEE, 2021: 3138-3147.
|