[1] CIAPARRONE G, LUQUE S′ANCHEZ F, TABIK S, et al. Deep learning in video multi-object tracking: A survey [J]. Neurocomputing, 2020, 381: 61-88.
[2] WANG C D. Key technologies of the real-time processing with low-altitude UAV video [D]. Wuhan: Wuhan University, 2018 (in Chinese).
[3] ZHANG X D, IZQUIERDO E, CHANDRAMOULI K. Dense and small object detection in UAV vision based on cascade network [C]//2019 IEEE/CVF International Conference on Computer Vision Workshop. Seoul: IEEE, 2019: 118-126.
[4] CAI Z W, VASCONCELOS N. Cascade R-CNN: Delving into high quality object detection [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018:6154-6162.
[5] CHEN C R, ZHANG Y, LV Q X, et al. RRNet: A hybrid detector for object detection in drone-captured images [C]//2019 IEEE/CVF International Conference on Computer Vision Workshop. Seoul: IEEE, 2019: 100-108.
[6] WANG W. Research on real-time vehicle detection and tracking algorithm based on UAV [D]. Qinhuangdao: Yanshan University, 2020 (in Chinese).
[7] SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: Inverted residuals and linear bottlenecks [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 4510-4520.
[8] REDMON J, FARHADI A. YOLOv3: An incremental improvement [DB/OL]. (2018-04-08). https://arxiv.org/abs/1804.02767.
[9] ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss: Faster and better learning for bounding box regression [J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 12993-13000.
[10] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection [C]//2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017:2999-3007.
[11] KIM M, ALLETTO S, RIGAZIO L. Similarity mapping with enhanced Siamese network for multi-object tracking [DB/OL]. (2016-09-28). https://arxiv.org/abs/1609.09156.
[12] WOJKE N, BEWLEY A, PAULUS D. Simple online and realtime tracking with a deep association metric [C]//2017 IEEE International Conference on Image Processing. Beijing: IEEE, 2017: 3645-3649.
[13] BEWLEY A, GE Z Y, OTT L, et al. Simple online and realtime tracking [C]//2016 IEEE International Conference on Image Processing. Phoenix: IEEE, 2016: 3464-3468.
[14] MILAN A, REZATOFIGHI S H, DICK A, et al. Online multi-target tracking using recurrent neural networks [J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2017, 31(1): 4225-4232.
[15] LI S Y, YEUNG D Y. Visual object tracking for unmanned aerial vehicles: A benchmark and new motion models [J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2017, 31(1): 4140-4146.
[16] LOWE D G. Distinctive image features from scaleinvariant keypoints [J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
[17] PAN S Y, TONG Z H, ZHAO Y Y, et al. Multiobject tracking hierarchically in visual data taken from drones [C]//2019 IEEE/CVF International Conference on Computer Vision Workshop. Seoul: IEEE, 2019: 135-143.
[18] BERGMANN P, MEINHARDT T, LEAL-TAIX′E L. Tracking without bells and whistles [C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 941-951.
[19] VOIGTLAENDER P, KRAUSE M, OSEP A, et al. MOTS: Multi-object tracking and segmentation [C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 7934-7943.
[20] YU F, WANG D Q, SHELHAMER E, et al. Deep layer aggregation [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt
Lake City: IEEE, 2018: 2403-2412.
[21] TIAN Z, SHEN C H, CHEN H, et al. FCOS: fully convolutional one-stage object detection [C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 9626-9635.
[22] MAHMOUDI N, AHADI S M, RAHMATI M. Multitarget tracking using CNN-based features: CNNMTT [J]. Multimedia Tools and Applications, 2019, 78(6): 7077-7096.
[23] PERNICI F, BARTOLI F, BRUNI M, et al. Memory based online learning of deep representations from video streams [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 2324-2334.
[24] WANG Z D, ZHENG L, LIU Y X, et al. Towards real-time multi-object tracking [M]//Computer vision– ECCV 2020. Cham: Springer, 2020: 107-122.
[25] ZHANG Y F, WANG C Y, WANG X G, et al. FairMOT: On the fairness of detection and re-identification in multiple object tracking [J]. International Journal of Computer Vision, 2021, 129: 3069-3087.
[26] REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized intersection over union: A metric and a loss for bounding box regression [C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 658-666.
[27] MUNKRES J. Algorithms for the assignment and transportation problems [J]. Journal of the Society for Industrial and Applied Mathematics, 1957, 5(1): 32-38.
[28] BAY H, TUYTELAARS T, VAN GOOL L. SURF: Speeded up robust features [M]//Computer vision–ECCV 2006. Berlin, Heidelberg: Springer, 2006: 404-417.
[29] CALONDER M, LEPETIT V, STRECHA C, et al. BRIEF: Binary robust independent elementary features [M]//Computer vision – ECCV 2010. Berlin, Heidelberg: Springer, 2010: 778-792.
[30] FISCHLER M, BOLLES R. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography [J]. Communications of the ACM, 1981, 24: 381-395.
[31] ZHOU X, KOLTUN V, KR¨AHENB¨UHL P. Tracking objects as points [M]//Computer vision – ECCV 2020. Cham, Springer, 2020: 474-490.
[32] ZHOU X Y, WANG D Q, KR¨AHENB¨UHL P. Objects as points [DB/OL]. (2019-04-16). https://arxiv.org/abs/1904.07850.
|