J Shanghai Jiaotong Univ Sci ›› 2024, Vol. 29 ›› Issue (3): 388-399.doi: 10.1007/s12204-022-2540-4
• Automation & Computer Technologies • Previous Articles Next Articles
LIU Zengmin1,2,3,4,6 (刘增敏), WANG Shentao5(王申涛),YAO Lixiu1,2,3 (姚莉秀),CAI Yunze1,2,3,4,6∗(蔡云泽)
Accepted:
2021-10-10
Online:
2024-05-28
Published:
2024-05-28
CLC Number:
LIU Zengmin (刘增敏), WANG Shentao(王申涛), YAO Lixiu(姚莉秀), CAI Yunze(蔡云泽). Online Multi-Object Tracking Under Moving Unmanned Aerial Vehicle Platform Based on Object Detection and Feature Extraction Network[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 388-399.
[1] CIAPARRONE G, LUQUE S′ANCHEZ F, TABIK S, et al. Deep learning in video multi-object tracking: A survey [J]. Neurocomputing, 2020, 381: 61-88. [2] WANG C D. Key technologies of the real-time processing with low-altitude UAV video [D]. Wuhan: Wuhan University, 2018 (in Chinese). [3] ZHANG X D, IZQUIERDO E, CHANDRAMOULI K. Dense and small object detection in UAV vision based on cascade network [C]//2019 IEEE/CVF International Conference on Computer Vision Workshop. Seoul: IEEE, 2019: 118-126. [4] CAI Z W, VASCONCELOS N. Cascade R-CNN: Delving into high quality object detection [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018:6154-6162. [5] CHEN C R, ZHANG Y, LV Q X, et al. RRNet: A hybrid detector for object detection in drone-captured images [C]//2019 IEEE/CVF International Conference on Computer Vision Workshop. Seoul: IEEE, 2019: 100-108. [6] WANG W. Research on real-time vehicle detection and tracking algorithm based on UAV [D]. Qinhuangdao: Yanshan University, 2020 (in Chinese). [7] SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: Inverted residuals and linear bottlenecks [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 4510-4520. [8] REDMON J, FARHADI A. YOLOv3: An incremental improvement [DB/OL]. (2018-04-08). https://arxiv.org/abs/1804.02767. [9] ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss: Faster and better learning for bounding box regression [J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 12993-13000. [10] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection [C]//2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017:2999-3007. [11] KIM M, ALLETTO S, RIGAZIO L. Similarity mapping with enhanced Siamese network for multi-object tracking [DB/OL]. (2016-09-28). https://arxiv.org/abs/1609.09156. [12] WOJKE N, BEWLEY A, PAULUS D. Simple online and realtime tracking with a deep association metric [C]//2017 IEEE International Conference on Image Processing. Beijing: IEEE, 2017: 3645-3649. [13] BEWLEY A, GE Z Y, OTT L, et al. Simple online and realtime tracking [C]//2016 IEEE International Conference on Image Processing. Phoenix: IEEE, 2016: 3464-3468. [14] MILAN A, REZATOFIGHI S H, DICK A, et al. Online multi-target tracking using recurrent neural networks [J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2017, 31(1): 4225-4232. [15] LI S Y, YEUNG D Y. Visual object tracking for unmanned aerial vehicles: A benchmark and new motion models [J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2017, 31(1): 4140-4146. [16] LOWE D G. Distinctive image features from scaleinvariant keypoints [J]. International Journal of Computer Vision, 2004, 60(2): 91-110. [17] PAN S Y, TONG Z H, ZHAO Y Y, et al. Multiobject tracking hierarchically in visual data taken from drones [C]//2019 IEEE/CVF International Conference on Computer Vision Workshop. Seoul: IEEE, 2019: 135-143. [18] BERGMANN P, MEINHARDT T, LEAL-TAIX′E L. Tracking without bells and whistles [C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 941-951. [19] VOIGTLAENDER P, KRAUSE M, OSEP A, et al. MOTS: Multi-object tracking and segmentation [C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 7934-7943. [20] YU F, WANG D Q, SHELHAMER E, et al. Deep layer aggregation [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 2403-2412. [21] TIAN Z, SHEN C H, CHEN H, et al. FCOS: fully convolutional one-stage object detection [C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 9626-9635. [22] MAHMOUDI N, AHADI S M, RAHMATI M. Multitarget tracking using CNN-based features: CNNMTT [J]. Multimedia Tools and Applications, 2019, 78(6): 7077-7096. [23] PERNICI F, BARTOLI F, BRUNI M, et al. Memory based online learning of deep representations from video streams [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 2324-2334. [24] WANG Z D, ZHENG L, LIU Y X, et al. Towards real-time multi-object tracking [M]//Computer vision– ECCV 2020. Cham: Springer, 2020: 107-122. [25] ZHANG Y F, WANG C Y, WANG X G, et al. FairMOT: On the fairness of detection and re-identification in multiple object tracking [J]. International Journal of Computer Vision, 2021, 129: 3069-3087. [26] REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized intersection over union: A metric and a loss for bounding box regression [C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 658-666. [27] MUNKRES J. Algorithms for the assignment and transportation problems [J]. Journal of the Society for Industrial and Applied Mathematics, 1957, 5(1): 32-38. [28] BAY H, TUYTELAARS T, VAN GOOL L. SURF: Speeded up robust features [M]//Computer vision–ECCV 2006. Berlin, Heidelberg: Springer, 2006: 404-417. [29] CALONDER M, LEPETIT V, STRECHA C, et al. BRIEF: Binary robust independent elementary features [M]//Computer vision – ECCV 2010. Berlin, Heidelberg: Springer, 2010: 778-792. [30] FISCHLER M, BOLLES R. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography [J]. Communications of the ACM, 1981, 24: 381-395. [31] ZHOU X, KOLTUN V, KR¨AHENB¨UHL P. Tracking objects as points [M]//Computer vision – ECCV 2020. Cham, Springer, 2020: 474-490. [32] ZHOU X Y, WANG D Q, KR¨AHENB¨UHL P. Objects as points [DB/OL]. (2019-04-16). https://arxiv.org/abs/1904.07850. |
[1] | Xiao Wenbo, Xiong Jiakai, Yu Lesheng, He Yinshui, Ma Guohong. Weld Defect Monitoring Based on Two-Stage Convolutional Neural Network [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 291-299. |
[2] | KE Jing1(柯晶), ZHU Junchao2 (朱俊超), YANG Xin1(杨鑫), ZHANG Haolin3 (张浩林), SUN Yuxiang1(孙宇翔), WANG Jiayi1(王嘉怡), LU Yizhou4(鲁亦舟), SHEN Yiqing5(沈逸卿), LIU Sheng6(刘晟), JIANG Fusong7(蒋伏松), HUANG Qin8(黄琴). TshFNA-Examiner: A Nuclei Segmentation and Cancer Assessment Framework for Thyroid Cytology Image [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 945-957. |
[3] | LI Mingai1, 2∗ (李明爱), WEI Lina1 (魏丽娜). Motor Imagery Classification Based on Plain Convolutional Neural Network and Linear Interpolation [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 958-966. |
[4] | GENG Zongsheng1 (耿宗盛), ZHAO Dongdong1,2 (赵东东), ZHOU Xingwen1 (周兴文), YAN Lei1 (闫磊), YAN Shi1,2∗ (阎石). Leader-Following Consensus of Multi-Agent Systems via Fully Distributed Event-Based Control [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 640-645. |
[5] | ZHANG Yanjun(张彦军), WANG Biyun(王碧云),CAI Yunze (蔡云泽). Multi-Channel Based on Attention Network for Infrared Small Target Detection [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 414-427. |
[6] | WANG Yujuan1 (王玉娟),LI Wengang2 (李文刚),LIU .Jianyong3 (刘建勇),CHEN Guangxue4 (陈广学),WANG Jun1*(汪军). Color Prediction Model of Gray Hybrid Multifilament Fabric [J]. J Shanghai Jiaotong Univ Sci, 2023, 28(6): 802-808. |
[7] | LIU Zhuoran (刘卓然), ZHAO Xu∗ (赵旭). Multilevel Disparity Reconstruction Network for Real-Time Stereo Matching [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(5): 715-722. |
[8] | SU Chong∗ (宿翀), LÜ Jing (吕晶), ZHANG Danyang (张丹阳), LI Hongguang∗ (李宏光). Affective Preferences Mining Approach with Applications in Process Control [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(5): 737-746. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 88
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract |
|
|||||||||||||||||||||||||||||||||||||||||||||||||