J Shanghai Jiaotong Univ Sci ›› 2023, Vol. 28 ›› Issue (3): 296-306.doi: 10.1007/s12204-023-2595-x
陈韦池1,刘浩城1,李子建1,郭靖1, 2,翟振坤3,孟伟1, 2
收稿日期:
2022-08-31
修回日期:
2023-02-11
接受日期:
2023-05-28
出版日期:
2023-05-28
发布日期:
2023-05-22
CHEN Weichi1(陈韦池),LIU Haocheng1(刘浩城),LI Zijian1(李子建),GUO Jing1,2*(郭靖),ZHAI Zhenkun3(翟振坤),MENG Wei1,2(孟伟)
Received:
2022-08-31
Revised:
2023-02-11
Accepted:
2023-05-28
Online:
2023-05-28
Published:
2023-05-22
摘要: 鼻咽癌是一种源于鼻黏膜的恶性肿瘤,常发生在头颈部。同心管机器人可形成复杂的形状,并可到达难以触及的病灶,因此常用于微创手术。然而一些同心管机器人由于其传动设计显得笨重,本文提出了一种基于双螺纹斜齿轮管的轻型螺旋齿轮传动装置。其驱动单元的紧凑和小型化,使得这种同心管机器人比传统同心管机器人更轻巧。通过运动学分析,得到了齿轮管姿态与电机输出角的映射关系。本文对驱动机构的精度、稳定性和重复性进行了测试。实验结果表明:该系统在平移试验中的定位误差小于0.3 mm;稳定性试验中滚动角度误差小于0.6°;平移重复性试验误差小于0.005 mm。最后使用同心管机器人进行了尖端瞄准试验,验证了同心管机器人用于手术的可行性。
中图分类号:
陈韦池, 刘浩城, 李子建, 郭靖, 翟振坤, 孟伟, . 一种基于双螺纹斜齿轮管的新型同心圆管机器人[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(3): 296-306.
CHEN Weichi(陈韦池), LIU Haocheng(刘浩城), LI Zijian(李子建), GUO Jing, (郭靖), ZHAI Zhenkun(翟振坤), MENG Wei(孟伟). Novel Concentric Tube Robot Based on Double-Threaded Helical Gear Tube[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(3): 296-306.
[1] | TAYLOR R H, MENCIASSI A, FICHTINGER G, et al. Medical robotics and computer-integrated surgery [M]//Springer handbook of robotics. Cham: Springer, 2016: 1657-1684. |
[2] | LIU Y, WU D, HAN F T, et al. Online adaptive identification and switching of soft contact model based on ART-II method [C]//2022 International Conference on Robotics and Automation. Philadelphia: IEEE, 2022: 8855-8861. |
[3] | GUO J, LIU C, POIGNET P. A scaled bilateral teleoperation system for robotic-assisted surgery with time delay [J]. Journal of Intelligent & Robotic Systems, 2019, 95(1): 165-192. |
[4] | BURGNER-KAHRS J, RUCKER D C, CHOSET H. Continuum robots for medical applications: A survey [J]. IEEE Transactions on Robotics, 2015, 31(6): 1261-1280. |
[5] | BERGELES C, YANG G Z. From passive tool holders to microsurgeons: Safer, smaller, smarter surgical robots [J]. IEEE Transactions on Bio-Medical Engineering, 2014, 61(5): 1565-1576. |
[6] | GILBERT H B, RUCKER D C, WEBSTER III R J. Concentric tube robots: The state of the art and future directions [M]//Robotics research. Cham: Springer, 2016: 253-269. |
[7] | BURGNER J, RUCKER D C, GILBERT H B, et al. A telerobotic system for transnasal surgery [J]. IEEE/ASME Transactions on Mechatronics, 2014, 19(3): 996-1006. |
[8] | ANOR T, MADSEN J R, DUPONT P. Algorithms for design of continuum robots using the concentric tubes approach: A neurosurgical example [C]//IEEE International Conference on Robotics and Automation. Shanghai: IEEE, 2011: 667-673. |
[9] | LIN F Y, BERGELES C, YANG G Z. Biometry-based concentric tubes robot for vitreoretinal surgery [C]//2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Milan: IEEE, 2015: 5280-5284. |
[10] | WIRZ R, TORRES L G, SWANEY P J, et al. An experimental feasibility study on robotic endonasal telesurgery [J]. Neurosurgery, 2015, 76(4): 479-484. |
[11] | DWYER G, CHADEBECQ F, TELLA AMO M, et al. A continuum robot and control interface for surgical assist in fetoscopic interventions [J]. IEEE Robotics and Automation Letters, 2017, 2(3): 1656-1663. |
[12] | DWYER G, COLCHESTER R J, ALLES E J, et al. Robotic control of a multi-modal rigid endoscope combining optical imaging with all-optical ultrasound [C]//2019 International Conference on Robotics and Automation. Montreal: IEEE, 2019: 3882-3888. |
[13] | LI G, PATEL N A, HAGEMEISTER J, et al. Body-mounted robotic assistant for MRI-guided low back pain injection [J]. International Journal of Computer Assisted Radiology and Surgery, 2020, 15(2): 321-331. |
[14] | LI G, PATEL N A, LIU W Q, et al. A fully actuated body-mounted robotic assistant for MRI-guided low back pain injection [C]//2020 IEEE International Conference on Robotics and Automation. Paris: IEEE, 2020: 5495-5501. |
[15] | NAYAR N, JEONG S, DESAI J P. Design and control of 5-DoF robotically steerable catheter for the delivery of the mitral valve implant [C]//2021 IEEE International Conference on Robotics and Automation. New York: ACM, 2021: 12268-12274. |
[16] | GAO Q, SUN Z L. A novel design of water-activated variable stiffness endoscopic manipulator with safe thermal insulation [J]. Actuators, 2021, 10(6): 130. |
[17] | SUN Z L, WANG Z, PHEE S J. Modeling and motion compensation of a bidirectional tendon-sheath actuated system for robotic endoscopic surgery [J]. Computer Methods and Programs in Biomedicine, 2015, 119(2): 77-87. |
[18] | LIN Z C, WU H, JIA H, et al. Fixed and sliding FBG sensors-based triaxial tip force sensing for cable-driven continuum robots [C]//2022 International Conference on Robotics and Automation. Philadelphia: IEEE, 2022: 9593-9599. |
[19] | WEBSTER R J, JONES B A. Design and kinematic modeling of constant curvature continuum robots: A review [J]. International Journal of Robotics Research, 2010, 29(13): 1661-1683. |
[20] | BAI S P, XING C H. Shape modeling of a concentric-tube continuum robot [C]//2012 IEEE International Conference on Robotics and Biomimetics. Guangzhou: IEEE, 2012: 116-121. |
[21] | WU L, WU K Y, REN H L. Towards hybrid control of a flexible curvilinear surgical robot with visual/haptic guidance [C]//2016 IEEE/RSJ International Conference on Intelligent Robots and Systems. Daejeon: IEEE, 2016: 501-507. |
[22] | DUPONT P E, LOCK J, ITKOWITZ B, et al. Design and control of concentric-tube robots [J]. IEEE Transactions on Robotics, 2010, 26(2): 209-225. |
[23] | RUCKER D C, WEBSTER R J III, CHIRIKJIAN G S, et al. Equilibrium conformations of concentric-tube continuum robots [J]. The International Journal of Robotics Research, 2010, 29(10): 1263-1280. |
[24] | XU R, ASADIAN A, NAIDU A S, et al. Position control of concentric-tube continuum robots using a modified Jacobian-based approach [C]//2013 IEEE International Conference on Robotics and Automation. Karlsruhe: IEEE, 2013: 5813-5818. |
[25] | BEDELL C, LOCK J, GOSLINE A, et al. Design optimization of concentric tube robots based on task and anatomical constraints [C]//IEEE International Conference on Robotics and Automation. Shanghai: IEEE, 2011: 398-403. |
[26] | BURGNER-KAHRS J, GILBERT H B, GRANNA J, et al. Workspace characterization for concentric tube continuum robots [C]//2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Chicago: IEEE, 2014: 1269-1275. |
[27] | WEBSTER R J, ROMANO J M, COWAN N J. Mechanics of precurved-tube continuum robots [J]. IEEE Transactions on Robotics, 2009, 25(1): 67-78. |
[28] | BERGELES C, GOSLINE A H, VASILYEV N V, et al. Concentric tube robot design and optimization based on task and anatomical constraints [J]. IEEE Transactions on Robotics, 2015, 31(1): 67-84. |
[29] | HA J, PARK F C, DUPONT P E. Achieving elastic stability of concentric tube robots through optimization of tube precurvature [C]//2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Chicago: IEEE, 2014: 864-870. |
[30] | SEARS P, DUPONT P. A steerable needle technology using curved concentric tubes [C]//2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing: IEEE, 2006: 2850-2856. |
[31] | GIRERD C, MORIMOTO T K. Design and control of a hand-held concentric tube robot for minimally invasive surgery [J]. IEEE Transactions on Robotics, 2021, 37(4): 1022-1038. |
[32] | ROX M F, ROPELLA D S, HENDRICK R J, et al. Mechatronic design of a two-arm concentric tube robot system for rigid neuroendoscopy [J]. IEEE/ASME Transactions on Mechatronics, 2020, 25(3): 1432-1443. |
[33] | GUO J, LIU H C, LIANG Z C, et al. A novel actuating mechanism for concentric tube robots based on universal friction wheel sleeves [C]//2022 International Conference on Advanced Robotics and Mechatronics. Guilin: IEEE, 2022: 75-81. |
[34] | SUZUKI T, KATAYAMA Y, KOBAYASHI E, et al. Compact forceps manipulator for laparoscopic surgery [C]//2005 IEEE/RSJ International Conference on Intelligent Robots and Systems. Edmonton: IEEE, 2005: 3678-3683. |
[35] | WU L, SONG S, WU K Y, et al. Development of a compact continuum tubular robotic system for nasopharyngeal biopsy [J]. Medical & Biological Engineering & Computing, 2017, 55(3): 403-417. |
[1] | 黎定佳1,2,3,4, 王重阳1,2,3, 郭伟5, 王志东6, 张忠涛5, 刘浩1,2,3. 基于少量多核光纤光栅传感器的单孔连续体手术机器人形状感知[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(3): 312-322. |
[2] | 李国志a,邹水中b,丁数学a. 基于层次决策网络的鼻拭子采样机器人视觉定位方法[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(3): 323-329. |
[3] | 李坚1,王星超1,钟敏2,郑剑2,孙正隆1. 基于实时切片到体积配准的机器人辅助甲状腺活检自主导航[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(3): 330-338. |
[4] | 张凯波1,陈丽1,董琦2. 输入受限的超冗余移动医疗机械臂混合控制[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(3): 348-359. |
[5] | 高红岩1, 2,艾孝杰1, 2,孙正隆3,陈卫东1, 2,高安柱1, 2. 手术机器人的力感知技术进展[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(3): 370-381. |
[6] | 赵玲玲1,郭遥2. 中国康复和辅助机器人的发展:困境与解决方案[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(3): 382-390. |
[7] | 李林霖,高飞扬,郑雄飞,张黎明,李世杰,王赫然. 多结构柔性夹持器提高夹持的鲁棒性[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(3): 307-311. |
[8] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(3): 383-392. |
[9] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(2): 231-239. |
[10] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 1-6. |
[11] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 7-14. |
[12] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 15-23. |
[13] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 24-35. |
[14] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 36-44. |
[15] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 45-54. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||