J Shanghai Jiaotong Univ Sci ›› 2023, Vol. 28 ›› Issue (4): 507-.doi: 10.1007/s12204-022-2505-7
• • 上一篇
华鹏a,舒雄鹏a,谢叻a,b
收稿日期:
2021-10-27
接受日期:
2021-11-16
出版日期:
2023-07-28
发布日期:
2023-07-31
HUA Penga (华鹏), SHU Xiongpenga (舒雄鹏),XIE Lea,b* (谢叻)
Received:
2021-10-27
Accepted:
2021-11-16
Online:
2023-07-28
Published:
2023-07-31
摘要: 柔性输尿管镜手术已广泛应用于上尿路疾病的诊断和治疗中,该手术的关键步骤是医生操作柔性镜末端到达目标区域进行诊疗。然而,柔性输尿管镜末端的偏转会表现出很明显的柔性迟滞特性,这可能是降低医生操作精度的最重要因素之一,因此在实际手术中医生往往需要花费较长的时间操作柔性镜末端到达目标治疗区域。本研究中,我们通过大量重复实验获得了柔性输尿管镜末端偏转的迟滞运动曲线,然后分别使用分段线性近似方法和长短期记忆网络方法对迟滞特性曲线进行建模分析。在此基础上,我们提出两种柔性镜末端偏转运动的迟滞补偿策略并开展一系列补偿实验来验证运动补偿策略的有效性。实验结果表明这两种迟滞补偿策略可以显著地提高柔性镜末端偏转运动精度,平均补偿误差不超过5°。
中图分类号:
华鹏a,舒雄鹏a,谢叻a,b. 柔性输尿管镜末端偏转运动的迟滞特性建模与运动补偿[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(4): 507-.
HUA Penga (华鹏), SHU Xiongpenga (舒雄鹏),XIE Lea,b* (谢叻). Hysteresis Modeling and Compensation for Distal Shaft Deflection of Flexible Ureteroscope[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(4): 507-.
[1] XUAN H Q, XU Y Z, CHEN Q, et al. Development andin vivo experiment of a prototype robot for portableflexible ureteroscope [J]. Journal of Clinical Urology,2021, 36(9): 721-724 (in Chinese). [2] SANTOS J M R. Ureteroscopy from the recent past tothe near future [J]. Urolithiasis, 2018, 46(1): 31-37. [3] GIUSTI G, PROIETTI S, VILLA L, et al. Currentstandard technique for modern flexible ureteroscopy:Tips and tricks [J]. European Urology, 2016, 70(1):188-194. [4] JOHNSON E B, KRAMBECK A E, WHITE W M,et al. Obstetric complications of ureteroscopy duringpregnancy [J]. The Journal of Urology, 2012, 188(1):151-154. [5] SHU X P, CHEN Q, XIE L. A novel robotic systemfor flexible ureteroscopy [J].The International Journalof Medical Robotics and Computer Assisted Surgery,2021, 17(1): 1-11. [6] SAGLAM R, MUSLUMANOGLU A Y, TOKATLI Z,et al. A new robot for flexible ureteroscopy: Development and early clinical results (IDEAL stage 1-2b) [J].European Urology, 2014,66(6): 1092-1100. [7] RASSWEILER J, FIEDLER M,CHARALAMPOGIANNIS N, et al. Robot-assistedflexible ureteroscopy: An update [J]. Urolithiasis,2018, 46(1): 69-77. [8] LEE D H, KIM Y H, COLLINS J, et al. Non-linear hysteresis compensation of a tendon-sheath-driven roboticmanipulator using motor current [J]. IEEE Roboticsand Automation Letters, 2021,6(2): 1224-1231. [9] HASANZADEH S, JANABI-SHARIFI F, KEENANP. Backlash characterization and position control ofa robotic catheter manipulator using experimentallybased kinematic model [J]. Mechatronics, 2017, 44: 94-106. [10] WANG X Y, BIE D Y, HAN J D, et al. Active modeling and compensation for the hysteresis of a roboticflexible ureteroscopy [J]. IEEE Access, 2020,8: 100620-100630. [11] HASSANI V, TJAHJOWIDODO T, DO T N. A survey on hysteresis modeling, identification and control[J]. Mechanical Systems and Signal Processing, 2014,49(1/2): 209-233. [12] CYBENKO G. Approximation by superpositions of asigmoidal function [J]. Mathematics of Control, Signalsand Systems, 1989, 2(4): 303-314. [13] ZHAO X L, TAN Y H. Modeling Preisach-type hysteresis nonlinearity using neural networks [J]. Control Theory & Applications, 2006, 23(4): 581-585 (inChinese). [14] XIE S L, ZHANG W X, ZHANG W M, et al. Hysteresis modeling method for pneumatic muscle based onmulti-branch BP neural network [J]. Acta MetrologicaSinica, 2021, 42(6): 745-752 (in Chinese). [15] ZOU S R, WU Y N, FANG Y C. Tracking control ofpiezoelectric actuator based on feedforward compensation of recurrent neural network [J]. CAAI Transactions on Intelligent Systems, 2021, 16(3): 567-574 (inChinese). [16] DANG X J, LIU F. Improved LSTM-based hysteresismodeling of flexible joint for industrial robot [J]. Modular Machine Tool & Automatic Manufacturing Technique, 2021(7): 1-4 (in Chinese). |
[1] | 黎定佳1,2,3,4, 王重阳1,2,3, 郭伟5, 王志东6, 张忠涛5, 刘浩1,2,3. 基于少量多核光纤光栅传感器的单孔连续体手术机器人形状感知[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(3): 312-322. |
[2] | 李国志a,邹水中b,丁数学a. 基于层次决策网络的鼻拭子采样机器人视觉定位方法[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(3): 323-329. |
[3] | 李坚1,王星超1,钟敏2,郑剑2,孙正隆1. 基于实时切片到体积配准的机器人辅助甲状腺活检自主导航[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(3): 330-338. |
[4] | 张凯波1,陈丽1,董琦2. 输入受限的超冗余移动医疗机械臂混合控制[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(3): 348-359. |
[5] | 高红岩1, 2,艾孝杰1, 2,孙正隆3,陈卫东1, 2,高安柱1, 2. 手术机器人的力感知技术进展[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(3): 370-381. |
[6] | 赵玲玲1,郭遥2. 中国康复和辅助机器人的发展:困境与解决方案[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(3): 382-390. |
[7] | 陈韦池, 刘浩城, 李子建, 郭靖, 翟振坤, 孟伟, . 一种基于双螺纹斜齿轮管的新型同心圆管机器人[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(3): 296-306. |
[8] | 李林霖, 高飞扬, 郑雄飞, 张黎明, 李世杰, 王赫然. 多结构柔性夹持器提高夹持的鲁棒性[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(3): 307-311. |
[9] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(3): 383-392. |
[10] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(2): 231-239. |
[11] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 1-6. |
[12] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 7-14. |
[13] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 15-23. |
[14] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 24-35. |
[15] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 36-44. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 116
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 193
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||