J Shanghai Jiaotong Univ Sci ›› 2023, Vol. 28 ›› Issue (3): 289-295.doi: 10.1007/s12204-023-2602-2
所属专题: 智能机器人
• • 下一篇
赵亚飞1,黄超逸2,邹玉莹2,邹可涵1,邹笑阳4,薛嘉琦4,李晓婷4,KOH Keng Huat4,王小军3,赖伟超4,胡勇3,席宁1,王峥5
收稿日期:
2022-10-15
修回日期:
2023-02-09
接受日期:
2023-05-28
出版日期:
2023-05-28
发布日期:
2023-05-22
ZHAO Yafei1 (赵亚飞),HUANG Chaoyi2 (黄超逸),ZOU Yuging3(邹玉莹),ZOU Kehan1(邹可涵),ZOU Xiaogang4(邹笑阳),XUE .Jiaqi4(薛嘉琦),LI Xiaoting4(李晓婷),KOH Keng Huat4,WANG Xiaojun3(王小军),LAI Wai Chiu King4(赖伟超),HU Yong3(胡勇),XI Ning1*(席宁),WANG Zheng5*(王峥)
Received:
2022-10-15
Revised:
2023-02-09
Accepted:
2023-05-28
Online:
2023-05-28
Published:
2023-05-22
摘要: 与衰老过程有关的疾病可能导致膝关节功能失调,因此需要以可穿戴机器人护膝的形式提供膝关节援助。然而,现有的可穿戴机器人在协助老年人的日常活动中面临着力的有效传递和适应人体运动的困难。尽管软体驱动器已被广泛用于可穿戴机器人中,在便携的基础上实现快速响应和运动控制仍然是一个挑战。针对这些问题,我们提出了一个集成多传感器和直驱液压驱动系统的软体护膝机器人系统。我们在便携式液压系统中实现了可控和快速的力输出。多传感器的反馈使机器人系统能够通过人的生理信号和动作信息与人体进行协作。人类用户的测试结果验证了该膝关节机器人可以通过肌电信号触发而向膝关节提供辅助扭矩。
中图分类号:
赵亚飞, 黄超逸, 邹玉莹, 邹可涵, 邹笑阳, 薛嘉琦, 李晓婷, KOH Keng Huat, 王小军, 赖伟超, 胡勇, 席宁, 王峥. 用于膝关节辅助的集成式液压驱动可穿戴机器人[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(3): 289-295.
ZHAO Yafei (赵亚飞), HUANG Chaoyi (黄超逸), ZOU Yuging(邹玉莹), ZOUKehan(邹可涵), zoU Xiaogang(邹笑阳), XUE .Jiaqi(薛嘉琦), LI Xiaoting(李晓婷), KOH Keng Huat, WANG Xiaojun(王小军), LAI Wai Chiu King(赖伟超), HU Yong(胡勇), XI Ning(席宁), WANG Zheng(王峥). Integrated Hydraulic-Driven Wearable Robot for Knee Assistance[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(3): 289-295.
[1] | KULOWSKI J. The classic: Flexion contracture of the knee: The mechanics of the muscular contracture and the turnbuckle cast method of treatment; with a review of fifty-five cases [J]. Clinical Orthopaedics & Related Research, 2007, 464: 4-10. |
[2] | HYODO K, MASUDA T, AIZAWA J, et al. Hip, knee, and ankle kinematics during activities of daily living: A cross-sectional study [J]. Brazilian Journal of Physical Therapy, 2017, 21(3): 159-166. |
[3] | TAGLIAMONTE N L, SERGI F, CARPINO G, et al. Human-robot interaction tests on a novel robot for gait assistance [C]//2013 IEEE 13th International Conference on Rehabilitation Robotics. Seattle: IEEE, 2013: 1-6. |
[4] | QUINTERO H A, FARRIS R J, GOLDFARB M. A method for the autonomous control of lower limb exoskeletons for persons with paraplegia [J]. Journal of Medical Devices, 2012, 6(4): 0410031-0410036. |
[5] | YOUNG A J, FERRIS D P. State of the art and future directions for lower limb robotic exoskeletons [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25(2): 171-182. |
[6] | SCHIELE A. Ergonomics of exoskeletons: Subjective performance metrics [C]//2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. St. Louis: IEEE, 2009: 480-485. |
[7] | RUS D, TOLLEY M T. Design, fabrication and control of soft robots [J]. Nature, 2015, 521(7553): 467-475. |
[8] | NISHIOKA Y, UESU M, TSUBOI H, et al. Development of a pneumatic soft actuator with pleated inflatable structures [J]. Advanced Robotics, 2017, 31(14): 753-762. |
[9] | PARK J, CHOI J, KIM S J, et al. Design of an inflatable wrinkle actuator with fast inflation/deflation responses for wearable suits [J]. IEEE Robotics and Automation Letters, 2020, 5(3): 3799-3805. |
[10] | SRIDAR S, NGUYEN P H, ZHU M J, et al. Development of a soft-inflatable exosuit for knee rehabilitation [C]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems. Vancouver: IEEE, 2017: 3722-3727. |
[11] | FOCCHI M, GUGLIELMINO E, SEMINI C, et al. Control of a hydraulically-actuated quadruped robot leg [C]//2010 IEEE International Conference on Robotics and Automation. Anchorage: IEEE, 2010: 4182-4188. |
[12] | BLACKBURN J F, REETHOF G, SHEARER J L. Fluid power control [M]. Cambridge: The MIT Press, 1960 |
[13] | KRUTZ G W, CHUA P S K. Water hydraulics: Theory and applications 2004[C]//Workshop on Water Hydraulics, Agricultural Equipment Technology Conference. Louisville: Local Committee, 2004: 1-33. |
[14] | MELLER M A, BRYANT M, GARCIA E. Reconsidering the McKibben muscle: Energetics, operating fluid, and bladder material [J]. Journal of Intelligent Material Systems and Structures, 2014, 25(18): 2276-2293. |
[15] | MARTINEZ-HERNANDEZ U, DEHGHANI-SANIJ A A. Probabilistic identification of sit-to-stand and stand-to-sit with a wearable sensor [J]. Pattern Recognition Letters, 2019, 118: 32-41. |
[16] | PARK Y L, CHEN B R, PE′REZ-ARANCIBIA N O, et al. Design and control of a bio-inspired soft wearable robotic device for ankle-foot rehabilitation [J]. Bioinspiration & Biomimetics, 2014, 9(1): 016007. |
[17] | SRIDAR S, QIAO Z, MUTHUKRISHNAN N, et al. A soft-inflatable exosuit for knee rehabilitation: Assisting swing phase during walking [J]. Frontiers in Robotics and AI, 2018, 5: 44. |
[18] | VEALE A J, STAMAN K, VAN DER KOOIJ H. Soft, wearable, and pleated pneumatic interference actuator provides knee extension torque for sit-to-stand [J]. Soft Robotics, 2021, 8(1): 28-43. |
[19] | ABBASI P, NEKOUI M A, ZAREINEJAD M, et al. Position and force control of a soft pneumatic actuator [J]. Soft Robotics, 2020, 7(5): 550-563. |
[20] | LI X T, KOH K H, FARHAN M, et al. An ultraflexible polyurethane yarn-based wearable strain sensor with a polydimethylsiloxane infiltrated multilayer sheath for smart textiles [J]. Nanoscale, 2020, 12(6): 4110-4118. |
[21] | REAZ M B I, HUSSAIN M S, MOHD-YASIN F. Techniques of EMG signal analysis: Detection, processing, classification and applications [J]. Biological Procedures Online, 2006, 8(1): 11-35. |
[22] | BURI H, WEINAND Y. ORIGAMI — folded plate structures, architecture [C]//10th World Conference on Timber Engineering. Miyazaki: Enigineered Wood Products Association, 2008: 2090-2097. |
[23] | YI J, CHEN X J, SONG C Y, et al. Customizable three-dimensional-printed origami soft robotic joint with effective behavior shaping for safe interactions [J]. IEEE Transactions on Robotics, 2019, 35(1): 114-123. |
[1] | 李茹1,陈方2,俞文伟3,IGARASH Tatsuo3,4,舒雄鹏1,谢叻1,5,6. 一种新型线驱动手术软体机器人[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(1): 60-72. |
[2] | 王宇轩, 刘朝雨, 王江北, 费燕琼. 具有多地形运动能力的双模块软体机器人[J]. 上海交通大学学报, 2022, 56(10): 1388-1396. |
[3] | 刘佳鹏, 王江北, 丁烨, 费燕琼. 晶格型模块化软体机器人自重构序列[J]. 上海交通大学学报, 2021, 55(2): 111-116. |
[4] | 易灿明,余海东,王皓. 基于绝对节点坐标法的压电驱动复合结构动力学特性[J]. 上海交通大学学报, 2019, 53(6): 665-672. |
[5] | 王江北,方晔阳,童歆,张帅,费燕琼. 多气囊仿生软体机器人设计及其运动特性分析[J]. 上海交通大学学报(自然版), 2018, 52(1): 20-25. |
[6] | 费燕琼,吕海洋,沈星尧. 模块化软体机器人运动模式[J]. 上海交通大学学报(自然版), 2013, 47(12): 1870-1873. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||