J Shanghai Jiaotong Univ Sci ›› 2025, Vol. 30 ›› Issue (4): 625-636.doi: 10.1007/s12204-025-2819-3
• • 下一篇
收稿日期:
2024-07-02
接受日期:
2024-10-18
出版日期:
2025-07-31
发布日期:
2025-07-31
海几哲1,徐庆宇1,单春龙2,李海杰1,荆磊1
Received:
2024-07-02
Accepted:
2024-10-18
Online:
2025-07-31
Published:
2025-07-31
摘要: 在骨组织工程微结构设计中,调整仿生骨支架的结构设计可为支架表面的细胞提供不同的分化刺激。本研究探讨了不同生物仿生微结构对推进骨组织工程支架的生物力学影响。构建了具有恒定 80% 孔隙率的,两种基于泰森多边形算法的不规则骨支架(均质/径向梯度)和八种包括柱状体心立方结构、Vintiles、菱形与立方体的规则晶格支架(均质/径向梯度)。利用机械刺激分化算法、有限元分析和计算流体动力学研究了不同孔隙结构对支架内八面体剪切应变和流体流动剪切应力的影响,阐明了五种结构骨/软骨细胞类型的分化能力。研究结果表明:不规则结构和径向梯度设计可促进成骨细胞分化,而规则结构和均质设计可促进软骨分化;在径向梯度不规则支架中观察到的成骨细胞和软骨细胞分化比例最高。这项研究有助于深入了解骨组织工程植入物的微结构设计。
中图分类号:
. 骨髓间充质干细胞在不规则与规则骨组织工程支架中的组织分化比较研究[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(4): 625-636.
Hai Jizhe, Xu Qingyu, Shan Chunlong, Li Haijie, Jing Lei. Comparative Study on Tissue Differentiation of Bone Marrow Mesenchymal Stem Cells in Irregular Versus Regular Bone Tissue Engineering Scaffolds[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(4): 625-636.
[1] SCHEMITSCH E H. Size matters: Defining critical in bone defect size! [J]. Journal of Orthopaedic Trauma, 2017, 31(Sup.5): S20-S22. [2] MARTíNEZ-VáZQUEZ F J, CABA?AS M V, PARIS J L, et al. Fabrication of novel Si-doped hydroxyapatite/gelatine scaffolds by rapid prototyping for drug delivery and bone regeneration [J]. Acta Biomaterialia, 2015, 15: 200-209. [3] ZHANG X B, GONG H, FAN R X, et al. Comparative study between bone tissue engineering scaffolds with bull and rat cancellous microarchitectures on tissue differentiations of bone marrow stromal cells: A numerical investigation [J]. Journal of Bionic Engineering, 2018, 15(5): 924-938. [4] SANDINO C, LACROIX D. A dynamical study of the mechanical stimuli and tissue differentiation within a CaP scaffold based on micro-CT finite element models [J]. Biomechanics and Modeling in Mechanobiology, 2011, 10(4): 565-576. [5] AZIZI P, DROBEK C, BUDDAY S, et al. Simulating the mechanical stimulation of cells on a porous hydrogel scaffold using an FSI model to predict cell differentiation [J]. Frontiers in Bioengineering and Biotechnology, 2023, 11: 1249867. [6] PERIER-METZ C, DUDA G N, CHECA S. Mechano-biological computer model of scaffold-supported bone regeneration: Effect of bone graft and scaffold structure on large bone defect tissue patterning [J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 585799. [7] PORTER B, ZAUEL R, STOCKMAN H, et al. 3-D computational modeling of media flow through scaffolds in a perfusion bioreactor [J]. Journal of Biomechanics, 2005, 38(3): 543-549. [8] PRENDERGAST P J, HUISKES R, S?BALLE K. Biophysical stimuli on cells during tissue differentiation at implant interfaces [J]. Journal of Biomechanics, 1997, 30(6): 539-548. [9] SUN Y Y, WAN B, WANG R X, et al. Mechanical stimulation on mesenchymal stem cells and surrounding microenvironments in bone regeneration: Regulations and applications [J]. Frontiers in Cell and Developmental Biology, 2022, 10: 808303. [10] WANG G J, SHEN L D, ZHAO J F, et al. Design and compressive behavior of controllable irregular porous scaffolds: Based on voronoi-tessellation and for additive manufacturing [J]. ACS Biomaterials Science & Engineering, 2018, 4(2): 719-727. [11] KOONS G L, DIBA M, MIKOS A G. Materials design for bone-tissue engineering [J]. Nature Reviews Materials, 2020, 5: 584-603. [12] LIU Z Q, GONG H, GAO J Z, et al. Design of new gradient scaffolds based on triply periodic minimal surfaces and study on its mechanical, permeability and tissue differentiation characteristics [J]. Journal of Biomedical Engineering, 2021, 38(5): 960-968 (in Chinese). [13] LIU F, MAO Z F, ZHANG P, et al. Functionally graded porous scaffolds in multiple patterns: New design method, physical and mechanical properties [J]. Materials & Design, 2018, 160: 849-860. [14] LU T, SUN Z W, JIA C W, et al. Roles of irregularity of pore morphology in osteogenesis of Voronoi scaffolds: From the perspectives of MSC adhesion and mechano-regulated osteoblast differentiation [J]. Journal of Biomechanics, 2023, 151: 111542. [15] XU Q Y, HAI J Z, SHAN C L, et al. Mechanical and permeability properties of radial-gradient bone scaffolds developed by voronoi tessellation for bone tissue engineering [J]. Journal of Shanghai Jiao Tong University (Science), 2024. http://dx.doi.org/10.1007/s12204-024-2770-8 [16] HOLLNAGEL D I, SUMMERS P E, POULIKAKOS D, et al. Comparative velocity investigations in cerebral arteries and aneurysms: 3D phase-contrast MR angiography, laser Doppler velocimetry and computational fluid dynamics [J]. NMR in Biomedicine, 2009, 22(8): 795-808. [17] YAP C H, SAIKRISHNAN N, YOGANATHAN A P. Experimental measurement of dynamic fluid shear stress on the ventricular surface of the aortic valve leaflet [J]. Biomechanics and Modeling in Mechanobiology, 2012, 11(1/2): 231-244. [18] MAGROFUOCO E, FLAIBANI M, GIOMO M, et al. Cell culture distribution in a three-dimensional porous scaffold in perfusion bioreactor [J]. Biochemical Engineering Journal, 2019, 146: 10-19. [19] MOKHTARI-JAFARI F, AMOABEDINY G, HAGHIGHIPOUR N, et al. Mathematical modeling of cell growth in a 3D scaffold and validation of static and dynamic cultures [J]. Engineering in Life Sciences, 2016, 16(3): 290-298. [20] SEDDIQI H, SAATCHI A, AMOABEDINY G, et al. Inlet flow rate of perfusion bioreactors affects fluid flow dynamics, but not oxygen concentration in 3D-printed scaffolds for bone tissue engineering: Computational analysis and experimental validation [J]. Computers in Biology and Medicine, 2020, 124: 103826. [21] PAZ C, SUáREZ E, GIL C, et al. Numerical modelling of osteocyte growth on different bone tissue scaffolds [J]. Computer Methods in Biomechanics and Biomedical Engineering, 2022, 25(6): 641-655. [22] MELCHELS F P W, TONNARELLI B, OLIVARES A L, et al. The influence of the scaffold design on the distribution of adhering cells after perfusion cell seeding [J]. Biomaterials, 2011, 32(11): 2878-2884. |
[1] | . 基于调频连续波雷达的全方位人体行为识别方法[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(4): 637-645. |
[2] | . 特发性脊柱侧后凸的动态响应[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 482-492. |
[3] | . 基于毫米波雷达的智能心率提取方法[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 493-498. |
[4] | . 基于呼气末二氧化碳感知的气管插管方法[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 582-590. |
[5] | . 基于增强现实和超细径摄像头的胸腔闭式引流穿刺可视化系统[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 417-424. |
[6] | . 近红外胶囊机器人无线能量接收线圈优化设计[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 425-432. |
[7] | . 基于Voronoi Tessellation开发的径向梯度骨支架的机械和渗透性能研究[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 433-445. |
[8] | 傅航1,许江长 1,李寅炜2,4,周慧芳2,4,陈晓军1,3. 基于视频图像增强现实的视神经管减压手术导航系统[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 34-42. |
[9] | 周涵巍1,朱心平1,马有为2,王坤东1. 低延时纤维胆道镜机器人驱动控制系统[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 43-52. |
[10] | 詹何庆1,韩贵来1,魏传安1,李治群2. 人工智能结合磁共振成像和计算建模在心脏电生理与临床诊断中的应用[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 53-65. |
[11] | 刘玉川1,李浩1,唐宇龙1,梁杜娟2,谭佳3,符玥1,李勇明4. 基于互信息-支持向量回归的阿尔兹海默症磁共振影像脑年龄检测[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 130-135. |
[12] | 叶鹏,富荣昌,王召耀. 不同节段的颈椎前路椎间盘切除和融合术中植入Cage-Plate或Zero-P融合器系统后相邻节段生物力学分析[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 166-174. |
[13] | 贺贵松,黄学功,李峰. 基于主被动联合驱动的助力型踝关节外骨骼机器人的协调性设计[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 197-208. |
[14] | 李明爱1,2,3,许冬芹1. 综述:运动想像脑机接口中的迁移学习[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(1): 37-59. |
[15] | 徐杨, 李万万. 短波红外时间分辨成像研究进展[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(1): 29-36. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||